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Highlights

What are the main findings?

• The first comprehensive Fuzzy Analytic Network Process (FANP)-based decision sup-
port system (DSS) tailored to extended reality (XR) systems in healthcare is proposed
to systematically evaluate XR technologies for healthcare applications by integrating
the Supply Chain Operations Reference (SCOR) model and FANP.

• A structured analysis of XR systems reveals that reliability and responsiveness are the
most critical factors, with safety, accuracy, and user control being top-ranked sub-factors.

What is the implication of the main finding?

• The proposed model enables data-driven and expert-informed selection of XR systems,
improving alignment with healthcare performance needs.

• Insights from sensor-based evaluation and weighted criteria support XR system design,
procurement, and strategic implementation in clinical settings.

Abstract: In the past decade, extended reality (XR) has been introduced into healthcare due
to several potential benefits, such as scalability and cost savings. As there is no comprehen-
sive study covering all the factors influencing the selection of an XR system in the healthcare
and medical domain, a Decision Support System is proposed in this paper to identify and
rank factors impacting the performance of XR in this domain from an engineering design
perspective. The proposed system is built upon the Supply Chain Operations Reference
(SCOR) model supported by a literature survey and experts’ knowledge to extract and
identify important factors. Subsequently, the factors are categorized into distinct categories,
and their relative importance is specified by Analytic Network Process (ANP) models
under a fuzzy environment. Two fuzzy approaches for the ANP models are compared,
and the results are analyzed using statistical testing. The computational results show that
the ranking agreement between the two fuzzy approaches is strong and corresponds to
the fact that both approaches yield the same ranking of primary factors, highlighting the
significance of reliability as the topmost factor, followed by responsiveness, cost, and agility.
It is shown that while the top three important sub-factors are identical between the two
approaches, their relative order is slightly varied. Safety is considered to be the most critical
aspect within the reliability category in both approaches, but there are discrepancies in
the rankings of accuracy and user control and freedom. Both approaches also consider
warranty and depreciation costs as the least significant criteria.
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1. Introduction
Extended reality (XR) is a term used to describe all immersive technologies that exist

within the reality–virtuality continuum. The reality–virtuality Continuum is a theoretical
framework that describes the relationship between real and virtual environments [1]. The
continuum ranges from the real environment at one end to the virtual environment at
the other end, with augmented reality (AR) and mixed reality (MR) in between. The
reality–virtuality continuum helps to categorize and compare different types of immersive
technologies based on their level of immersion and interaction with the physical world. It
also provides a framework for designing and developing immersive experiences that fit
within a particular point on the continuum. Virtual reality (VR) creates a completely digital
environment that simulates the physical world or an imaginary one. AR overlays digital
content on top of the real world, while MR blends digital objects with the physical world in
real time.

Within recent decades, XR has been gaining increasing interest across different fields,
including retail [2], education [3], manufacturing [4], and healthcare [5]. Technological
advancements have transformed healthcare by introducing innovative approaches that
enhance patient care and clinical outcomes, with XR technologies gaining increasing recog-
nition for their potential across both clinical practice and research settings [6]. XR has made
its debut in the healthcare sector, starting with surgical procedures, and has since expanded
to medical training, patient care, and various other areas [5]. Recent evidence indicates that
XR is of benefit for patient education, educating and training medical students, surgical
planning, medical imaging, rehabilitation, and pain management [7]. Additionally, it has
been incorporated into the treatment of several medical conditions like neurodegenerative
disorders (e.g., post-traumatic stress disorder (PTSD), panic disorders, special phobias,
autism spectrum disorder (ASD)), dental medicine, orthopedics, obesity, and so forth [5,8].

XR can offer an engaging and authentic user experience that is practical for teaching
and providing immediate guidance during complex medical emergencies, diagnostic
procedures, interventions, and procedural applications [9]. Moreover, for beginners, XR can
provide extra support to enhance their proficiency in making medical decisions, utilizing
medical devices and equipment, and executing medical procedures. XR enables healthcare
professionals to access people, information, and experiences that were once inaccessible,
thereby reducing the geographical barriers between the delivery of value-based healthcare
and patients [9]. The most noteworthy benefit of XR in the healthcare industry could be its
ability to provide communal and shared experiences. In the past, medical professionals
might not have been able to empathize with their patients’ medical issues since they were
not sick themselves. However, with the advent of XR, this could change, as medical
personnel can now experience how it feels to be unwell and gain a better understanding of
their patients’ perspectives. XR involves the use of a specialized headset to simulate an
immersive 3D virtual environment, enabling users to feel physically present in a synthetic
space. Through interactions with virtual characters (avatars) and real-time feedback using
audio, visual, and haptic stimuli, medical personnel can engage in simulations that replicate
patients’ experiences, thereby fostering empathy and improving patient care [10].

Recent advances in sensor technologies have played a pivotal role in shaping the
development and application of XR systems. Sensors such as inertial measurement units
(IMUs), depth cameras, RGB-D sensors, LiDAR, eye trackers, and physiological sensors are
now integral to most XR platforms. These sensing components enable spatial tracking, envi-
ronmental awareness, and user interaction, forming the technical foundation for immersive
experiences. The richness and reliability of sensor data directly affect system responsive-
ness, safety, and realism—factors that are especially critical in high-stakes environments
such as healthcare [11].
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The type and configuration of sensors differ significantly across VR, AR, and MR
systems. VR systems often emphasize motion tracking and visual immersion, leveraging
IMUs and optical tracking to replicate physical motion within digital spaces. AR systems
require more advanced sensing, such as simultaneous localization and mapping (SLAM)
and depth estimation, to anchor virtual content to the physical world accurately. MR
systems go a step further by integrating multimodal inputs such as eye gaze, gesture
recognition, and contextual awareness to allow real-time dynamic interaction between
digital and physical elements. These differences in sensing complexity not only influence
the cost and form factor of XR systems but also determine their suitability for specific clinical
and operational tasks. For instance, MR systems like HoloLens 2 are better suited for image-
guided surgery, while simpler VR systems may suffice for immersive procedural training.

The evaluation of XR systems is far from a simple, straightforward task, given that nu-
merous heterogeneous factors should be considered in an integrated manner. Recent work
highlights the potential of integrating XR in healthcare and notes challenges in system-level
evaluation and integration [5], although formal qualitative and quantitative comparison
frameworks remain underdeveloped. This paper introduces an effective Decision Support
System (DSS) tailored for the evaluation and selection of XR systems in the healthcare
sector. Our DSS is founded on a framework that integrates the Supply Chain Operations
Reference (SCOR) with the Fuzzy Analytical Network Process (FANP) model. The pre-
sented system aligns with the hallmark characteristics of a DSS by integrating diverse
data sources, utilizing a hierarchical model, and employing sophisticated algorithms like
FANP to facilitate informed decision-making. This combination allows for systematic
identification and prioritization of the influential criteria essential for assessing XR systems
in healthcare settings. Additionally, two state-of-the-art fuzzy approaches for the ANP
models are compared, and the results are analyzed using statistical testing. The proposed
SCOR-FANP system allows decision-makers to evaluate and compare available XR systems
in a systematic manner to select the most suitable one. The proposed approach provides a
comprehensive evaluation of different factors affecting the performance of XR systems in
healthcare. It also allows researchers to have an early evaluation of the XR system during
the design phase. Our seminal contribution is rooted in its application to healthcare XR
system selection, synergistically combined with the SCOR model. This blend and the
consequent insights present a distinctive contribution to the existing literature.

The remainder of this paper is organized as follows. Section 2 reviews the body of
literature and highlights the most important features of XR systems. Section 3 describes the
methodology of the study. Section 4 discusses the experimental results. Section 5 presents a
performance evaluation of existing XR technologies based on the proposed criteria. Finally,
Section 6 concludes the paper.

2. Literature Survey
This section provides a comprehensive review of the literature on the applications of

XR technologies in healthcare. We categorize the literature into distinct sections, focusing
on clinical applications, technological advancements, and evaluation studies.

Clinical Application-Based Studies. XR technologies have been brought into health-
care during the past decade due to several potential benefits, such as scalability, increased
motivation, and cost savings. The expansion of XR in the healthcare industry has the poten-
tial to change how medical services are provided to autistic children, PTSD and depression
patients, patients undergoing surgeries, and patients with brain injuries, to name a few [5].
Among the medical areas in which XR technologies are being used, medical education and
training, surgical simulation, medical diagnostics, neurological rehabilitation, psychother-
apy, and telemedicine can be mentioned [12]. VR has been used therapeutically to treat
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posttraumatic stress disorder, anxiety disorders, phobias, schizophrenia, addiction, eating
disorders, and obesity [13–17]. Patients are more at ease dealing with challenging situations
“virtually” rather than in real life since they are aware that the digital environment is not
real, and it is likely that learning new behaviors could be applied in the real world [17].
Augmented reality can be helpful in the planning of surgical interventions and in communi-
cating potential medical complications to patients and their families in the context of patient
care [18]. Ref. [8] proposed that XR technologies could significantly improve adherence to
behavioral interventions and challenged researchers to explore XR-based interventions in
treating adolescent obesity. Ref. [14] conducted a review of XR and telehealth interventions
for children and adolescents with ASD, aiming to verify their efficacy and validity. Ref. [7]
wrote a chapter outlining the established clinical applications of XR, including mental
well-being, pain management, physiotherapy, and rehabilitation. Ref. [19] conducted a
systematic review investigating the utilization of XR-based therapies for anxiety disorder
patients, exploring the perceptions and experiences of patients and healthcare providers,
and comparing the effectiveness of different XR approaches in anxiety disorder treatment.

Technology-Based Studies. Using whole-slide microscopic images, Google’s AR
Microscope employed machine learning to detect cancer in real-time [13]. The proposed
system enables integration of artificial intelligence (AI) into routine workflows, which was
demonstrated to be useful in the detection of prostate and metastatic breast cancer [14]. A
systematic review [20] indicated that integrating AI, XR, and human digital twin-based
solutions can reduce technical errors and provide a universal framework for advancing
personalized cardiology. Ref. [5] discussed the potential impact of XR in transforming the
healthcare industry, outlining its use cases, challenges, XR tools and techniques for intelli-
gent healthcare, recent developments in XR-based healthcare services, and the potential
benefits and future aspects of XR in the medical domain. Ref. [21] provided a comprehen-
sive overview of XR’s theoretical potential, highlighting its technical advancements and
biomedical applications. Ref. [9] proposed a standardized taxonomy of essential XR capa-
bilities and described important functional characteristics that could serve as a conceptual
design and development framework for XR-based medical training and real-time clinical
guidance for astronauts during deep space missions.

Evaluation-Based Studies. Evaluating the effectiveness of XR systems is still an open
question. Among the studies on evaluation and/or comparison of XR systems, most of
which focused on qualitative assessment of XR systems [22–25]. Among other industries
other than healthcare, Ref. [26] evaluated the application of AR devices from a process
point of view in the manufacturing industry. Ref. [27] critically evaluated the use of
AI and XR in real-world biomedical settings, comparing their outcomes to traditional
healthcare practices and illustrating their effectiveness through case studies. Ref. [28]’s
investigation also examined the integration of AI, XR, and VR in biomedical applications,
highlighting their roles in diagnosis, treatment, and medical training. Ref. [29] enhanced the
transparency and quality of reporting in early-phase clinical evaluations of XR applications
by applying the Delphi method. Ref. [30] identified and highlighted the role of immersive
technologies—including VR, AR, MR, XR, the metaverse, and gamification—in supporting
healthcare responses to COVID-19. The literature on the subject shows that there is a need
for a comprehensive quantitative DSS for evaluating XR systems in healthcare.

To build upon these findings and better understand how XR systems can be optimized
for different healthcare applications, it is crucial to examine the role of sensing technologies
that underpin XR platforms. The type and configuration of sensors integrated into XR
systems directly influence their usability, fidelity, and contextual appropriateness for clinical
interventions. Table 1 presents a comparative overview of the primary sensing technologies
used in XR systems, highlighting their roles in determining system performance and
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relevance to healthcare applications. It categorizes sensors such as IMUs, optical trackers,
depth cameras, LiDAR, eye trackers, gesture sensors, physiological sensors, and SLAM
techniques based on their technical functions, XR domain usage, and clinical applicability.
By aligning sensor capabilities with their impact on XR fidelity and medical integration,
the table bridges technical specifications with real-world healthcare needs.

Table 1. Sensors and sensing technologies in XR systems and their impact on performance.

Sensor Type Functionality Used In Impact on
Performance

Healthcare Application
Relevance

IMU
Tracks motion
(acceleration,

rotation)
VR, AR, MR

Essential for motion
tracking and
head/body
orientation

Used in surgical
simulation and
rehabilitation

Optical
Tracking Cameras

Detects external
markers or

body movement
VR, MR

Enables accurate
spatial positioning of

users and objects

Crucial in VR-based
procedural training and

motion analysis [7]

Depth Sensors
(e.g., ToF, RGB-D)

Measures distance to
objects in real-time AR, MR

Enhances spatial
mapping and

occlusion handling

Key for image-guided
surgery and spatial

visualization

LiDAR
High-precision
environmental

mapping
AR, MR

Improves SLAM,
depth perception,

and scene
understanding

Beneficial in remote
diagnostics and
navigation [13]

Eye Tracking Tracks gaze direction
and eye focus MR, high-end VR

Enables
attention-aware
interfaces and

foveated rendering

Supports cognitive
diagnostics and user

attention monitoring [5]

Hand Tracking/
Gesture Sensors

Detects hand
position and gestures MR, AR, some VR

Allows natural user
interaction without
physical controllers

Enables sterile
interaction in surgical

planning and
teleconsultation [8]

Physiological
Sensors

Measures vitals
(e.g., heart rate,

GSR, EEG)
MR, research VR

Adds biometric
feedback

for adaptive
environments

Applied in mental
health therapy, stress
monitoring, and pain

distraction [9,31]

SLAM (Sensor
Fusion Method)

Maps and localizes
the user in an
environment

AR, MR

Foundation
for anchoring

virtual content to
real-world space

Essential for
context-aware patient

visualization and
in-field diagnostics [13]

Gap Analysis

While several researchers have explored the potential of XR technologies in the medical
field, there is a lack of work proposing a DSS that addresses the criteria influencing the
selection/evaluation of XR systems in healthcare. To the best of our knowledge, this
study is the first research paper that presents a DSS based on a multiple-criteria analysis
for the evaluation and selection of XR systems to be applied in the healthcare sector.
The proposed system utilizes a combination of the SCOR model, a literature survey, and
expert knowledge to identify and rank influential criteria for evaluating XR systems in
healthcare. The ANP model is used to determine the relative importance of each criterion
under a fuzzy environment. Fuzzy environments help to deal with the uncertainty and
imprecision surrounding the opinion of our experts and literature, allowing for a more
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flexible and nuanced approach to factor identification and ranking [32–35]. Two state-of-
the-art fuzzy approaches are compared to provide a more comprehensive analysis. The
proposed system allows decision-makers to evaluate and compare available XR systems
systematically to select the most suitable one while providing researchers with an early
evaluation during the design phase. Overall, this approach provides a comprehensive
evaluation of different factors affecting the performance of XR systems in healthcare, aiding
in effective decision-making.

3. Materials and Methods
Our proposed multiple-criteria analysis approach consists of five phases: model con-

struction, data collection, model confirmation/validation, model parameter determination,
and calculating local and global weights, as demonstrated in Figure 1.

Forming expert panel using snowball sampling

Model construction

Model validation

FANP

SCORE model

Literature survey

Expert opinions

Identification and 
classification of criteria

Data Collection

Designing questionnaires 

Completing the questionnaires by the experts 

Calculating the relative importance (weights) of extracted 
criteria

Parameter aggregation

Constructing pairwise comparison matrices as input for FANP

 
Figure 1. The proposed research methodology.

3.1. Model Construction

Based on an extensive review of the literature, the most critical evaluation criteria
for XR systems in the healthcare domain are first identified and subsequently classified.
Loosely based on the well-established SCOR model [36,37], this paper provides a taxonomy
of XR system selection criteria and classifies them into distinct classes.

The SCOR model, with its wide recognition for aiding supply chain strategy formula-
tion, serves as a robust foundation. Its key attributes, like providing a standard description
of supply chain processes, performance metrics, and best practices, enable a systematic
approach to classify and evaluate XR systems. Leveraging SCOR’s principles allows this
paper to develop a coherent taxonomy that is adaptable to the evolving needs of the health-
care industry. It breaks down the criteria for XR system selection in healthcare into four
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overarching classes (reliability, responsiveness, agility, and cost), further subdivided into
18 specific criteria.

Reliability: The ability to perform tasks as expected. An XR system is expected to be
accurate, safe, and convenient.

• Accuracy: The degree to which the result of a measurement or calculation conforms to
the correct value or a standard [38]. This definition includes concepts such as precision
and recall.

• Safety: The condition or state of being free from harm, injury, or loss [39,40].
• Ease of installation and use: This includes features such as weight, if one or both hands

are free during usage, and help and documentation [37].
• User control and freedom: The ability of the user to freely move around and perform

intended tasks with full control [41].

Responsiveness: The speed and timeliness of service delivery.

• Feedback: Refers to the response time of the system and its ability to provide real-time
feedback [26,42].

• Setup time: The time interval necessary to prepare the system for operation [42,43].
• Maximum usage time: The maximum time that the system can operate without

interruption [43].
• Interaction method: Outlines the usability of the specific XR system. It can be vocal,

gestural, touching, physiological, or a combination of more than one method [41].
• Information update gap: How fast the XR system allows updating information from/to

the central system, thus supporting a more responsive process [42].

Agility: The capacity to effectively sense and respond to external influences/stimuli.

• Supported tech: It can support AR, VR, MR, or a combination of all [26].
• Expandability: The degree to which a system could easily extend or upgrade with new

functionalities and abilities to address new requirements [39].
• Operating environment: Refers to the environments (indoor, outdoor, and severe) in

which the system can operate [42].
• Operating range: The maximum allowable area where the system can operate [26].

Costs: All the costs associated with operating the processes.

• Purchase cost: The total cost paid for the acquisition of the XR system [44].
• Operating cost: All the required costs related to the operation of the XR system [45].
• Maintenance cost: The sum of the cost of preserving the system [39].
• Warranty cost: The cost paid for obtaining a warranty for the XR system [46].
• Depreciation cost: The reduction in the initial value of the machinery resulting from

its exploitation [46].

Figure 2 graphically showcases the hierarchical model based on this taxonomy.

3.2. Data Collection

Employing the snowball sampling method, the XR experts are opted to confirm,
identify, and categorize the factors and sub-factors.

3.2.1. Snowball Sampling Method

Snowball sampling is a sampling technique where primary subjects recruit future
study subjects among their acquaintances. This technique can be used to identify experts in
a certain field. Locating hidden populations and low cost can be mentioned as advantages
of the snowball sampling method. Snowball sampling starts with a convenience sample
of initial subjects [47]. The initial subjects serve as “seeds”, through which the sample
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consequently expands through several steps, just like a snowball growing in size as it
rolls down a hill [48]. For this work, the opinions of 15 experts in the intersection of XR
and healthcare are solicited. All experts met strict eligibility criteria regarding domain
experience, graduate qualification, and peer-reviewed contributions. Having a group of
five to eight experts suffices for training our proposed model. As an example, Ref. [48]
initiated with a snowball sample size of three internet of things experts which later was
expanded to a team of eight. We acknowledge that the snowball referral used to contact
some participants may have introduced a degree of network-homogeneity bias.

Reliability

XR systems selection in Healthcare

Responssiveness Agility Cost

Accuracy

Safety

Ease of installation and 
use

User control and 
freedom

Feedback

Setup time

Max usage time

Interaction method

Information update gap

Supported tech

Expandability

Operating environment

Operating range

Purchase cost

Operating cost

Maintenance cost

Warranty cost

Depreciation cost

 
Figure 2. The hierarchical model for evaluating XR systems in healthcare.

3.2.2. Questionnaire Design

To identify and prioritize the evaluation criteria for XR technologies in healthcare, the
FANP—a multi-criteria decision-making method—was employed, as it is well-suited for
capturing the complexity and interdependence of evaluation criteria under uncertainty.

The questionnaire was designed based on the validated model proposed by [49], com-
monly used in prior decision analysis research. The evaluation framework was structured
as a network, allowing for the consideration of interdependencies among criteria and sub-
criteria. To gather input, we developed a set of pairwise comparison questions. For each
pair of criteria, participants were asked to assess their relative importance. Each pairwise
comparison asked participants to evaluate the relative importance of one criterion over
another. For instance, within the “reliability” cluster, one question was: “How important
is Accuracy in comparison to Safety?” This approach was applied consistently across all
other criteria and sub-criteria clusters as well.

Respondents expressed their judgment using a linguistic scale (e.g., equally important,
moderately more important, etc.) provided in Table 2, which was then converted to a
Triangular Fuzzy Number (TFN) to account for the ambiguity and subjectivity of human
judgment. This conversion allowed us to represent expert preferences more realistically
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in the presence of uncertainty. It should be noted that, first, using a pre-approved ques-
tionnaire can help validate the questionnaire, and second, homogeneity and clustering as a
guarantee for validity insurance are considered [50].

Table 2. Linguistic scales for importance [51].

Linguistic Importance Scale TFN Scale TFN Reciprocal Scale

Equally important (1, 1, 1) (1, 1, 1)
Weakly more important (1, 3/2, 2) (1/2, 2/3, 1)

Moderately more important (3/2, 2, 5/2) (2/5, 1/2, 2/3)
Strongly more important (2, 5/2, 3) (1/3, 2/5, 1/2)

Extremely more important (5/2, 3, 7/2) (2/7, 1/3, 2/5)

3.3. Model Validation

To ensure the robustness and relevance of the proposed model, a comprehensive
validation process was undertaken.

3.3.1. Expert-Based Qualitative Validation:

Preliminary Model Review: Initially, a preliminary version of the model was pre-
sented to a select panel of domain experts. These experts, with substantial experience in
both healthcare and XR systems, meticulously reviewed the model’s structure, criteria,
and sub-criteria.

Feedback and Refinement: Through focused group discussions and one-on-one
interactions, the experts provided feedback on the relevance, comprehensiveness, and
clarity of the model components. This iterative process allowed for the identification of any
overlooked criteria, potential redundancies, or ambiguities.

Final Model Endorsement: After incorporating the suggested modifications, the
refined model was once again presented to the expert panel for a final review. Their
consensus endorsement confirmed the model’s validity and relevance in the target domain.

3.3.2. Questionnaire Distribution:

Once the model’s validity was ascertained through expert endorsement, the next phase
was the distribution of the questionnaire.

Development of the Questionnaire: The questionnaire was designed to capture the
relative importance and interrelationships among the model’s criteria and sub-criteria.
It integrated the findings from the literature review with insights from the preliminary
expert review.

Pilot Testing: Before the full-scale distribution, the questionnaire underwent pilot
testing with a subset of experts. This ensured clarity, appropriateness, and the feasibility of
the questions. Feedback from this phase further fine-tuned the questionnaire.

Full-Scale Distribution: The finalized questionnaire was then disseminated among a
broader set of experts in the field. Their responses facilitated the quantitative analysis of
the model’s components and their interrelationships. Expert input was gathered through
successive rounds over four weeks, with feedback loops until all participants confirmed
their final responses. The complete questionnaire is provided in Appendix B.

Through this rigorous validation process, we ensured that our model not only
stands up to academic scrutiny but also aligns well with practical, real-world insights
and expertise.
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3.4. Parameter Aggregation

In FANP, the results of pairwise comparison made by the experts are aggregated, and
the parameters are calculated as follows: The responses are mapped to TFNs using the
scale specified in Table 2. The weights of the experts for each question are calculated using
the following equation (weight of expert j for question i):

Weightij =
1

log
(
distanceij + 1

)
+ 1

, (1)

where distanceij is the difference between the response of expert j to question i and the
average of all experts’ responses to question i. The aggregated TFN associated with each
comparison is calculated based on the weighted average and standard deviation for each
question. The aggregated TFNs form the pairwise comparison matrices.

3.5. Calculating Criteria Weights

A fuzzy ANP-based model is used to calculate the local and global weights due to its
ability to address more generalized relations than AHP. Furthermore, its combination with
fuzzy theory is due to the inability of the original ANP model to handle the imprecision
and subjectivity in the pairwise comparison process made by the experts. The versatility
of ANP and FANP methodologies is evident not just in healthcare but also in diverse
applications. For instance, Refs. [52–54] are testament to this adaptability and underline the
adaptability of these methodologies. From flood vulnerability assessments to soil erosion
susceptibility evaluations and beyond, the common thread remains the robustness of ANP
and FANP in navigating intricate decision-making processes. Such cross-domain insights
accentuate the relevance of ANP and FANP for XR system selection in healthcare [52–54].

Let the TFN (lij, mij, uij) be the elements of the pairwise comparison matrix between
criterion i and j (named as pairwise comparison ratios), where lij, mij, and uij indicate
the smallest, the most promising, and the largest possible value describing a fuzzy event,
respectively [55]. Several approaches have been proposed to extend the ANP model
to a fuzzy setting. In this paper, two primary approaches are focused on, which are
aimed at determining the final weights of the criteria and prioritizing them accordingly.
Table 3 provides a comparative summary of FANP Approaches A and B, outlining their
methodological differences, computational structures, advantages, and complexity.

- FANP approach A

This approach, which is based on the model proposed by [49], involves the utilization
of fuzzy pairwise comparison judgments instead of exact numerical values for the compar-
ison ratios. By employing this method, the original fuzzy prioritization problem can be
transformed into a non-linear program. This is a three-step procedure which is described
in detail as follows [56]:

Step A-1. Using pairwise comparison matrices, determine the local weights of the
factors and sub-factors. Using the following mathematical programming model, the local
weights of the factors and sub-factors are calculated:

Maxλ (2)

Subject to:

(
mij − lij

)
λwj − wi + lijwj ≤ 0 (3)(

uij − mij
)
λwj + wi − uijwj ≤ 0 (4)
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n

∑
k=1

wk = 1, wk > 0, k = 1, 2, . . . , n (5)

i = 1, 2, . . . , n − 1, j = 2, 3, . . . nj > i, (6)

where w and λ denote the local weight vector and the consistency index. If the optimal
objective function of the programming model is positive, it means that the set of fuzzy
judgments is rather consistent, and if it is a negative value, it means that the fuzzy judg-
ments are inconsistent. The closer to one, the greater the consistency and compatibility of
judgments are. The consistency index is a metric devised to gauge the level of consistency
in the provided pairwise comparisons. In essence, λ measures the extent to which the
matrix deviates from perfect consistency. While the exact threshold can vary depending on
the specific context or the complexity of the decision problem, an index of 0.6 or higher is
generally deemed acceptable, implying that the judgments are sufficiently consistent for
the decision-making process [49].

Step A-2. In this step, the interdependent effects and the global weights of the criteria
are calculated. The interdependent effects are asked for by the experts and extracted from
the questionnaires. The global weights of the factors are equal to the product of the local
weights of the factors and the interdependency matrix.

Step A-3. The global weights of the sub-factors are calculated by multiplying the local
weight of the sub-factor with the global weights of the relevant factor, calculated in the
previous step.

- FANP approach B

The approach presented by [57] for fuzzy prioritization is based on [58,59]’s fuzzy
arithmetic means and requires a fuzzy ranking procedure to compare the final fuzzy scores.
To determine the final weights of the criteria, the following steps need to be followed:

Step B-1. Calculating the fuzzy synthetic extent for the criterion i, denoted as Si (the
combined judgment for criterion i relative to all others), as follows [57]:

∼
Si = (ai, bi, ci) =

(
n

∑
j=1

lij,
n

∑
j=1

mij,
n

∑
j=1

uij

)⊗(
n

∑
i=1

n

∑
j=1

lij,
n

∑
i=1

n

∑
j=1

mij,
n

∑
i=1

n

∑
j=1

uij

)−1

, ∀i = 1, . . . , n (7)

Step B-2. To obtain criteria weights, the principle of comparison must be considered
for fuzzy numbers. The degree of possibility (the likelihood that one fuzzy number is

greater than another) of comparing two fuzzy synthetic extents
∼
Si and

∼
S j is defined as

follows [57]:

V(
∼
Si ≥

∼
S j) = 1, i f f bi ≥ bj (8)

V(
∼
S j ≥

∼
Si) = hgt(

∼
Si
⋂ ∼

S j) =


ai−cj

(bj−cj)−(bi−ai)
, ai ≤ cj

0 , o.w.
(9)

Step B-3. Calculating the relative preference of each criterion (the least possibility

that criterion j is worse than any other), denoted as d′j = min
i

(V(
∼
S j ≥

∼
Si )) and then

normalizing them to find the criteria weights, Wj =
d′j

∑n
i=1 d′i

.
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Table 3. Comparison of FANP approaches A and B.

Aspect FANP Approach A [49] FANP Approach B [57]

Methodology Fuzzy pairwise comparison,
transformed into a non-linear program.

Fuzzy synthetic extent and fuzzy
ranking procedure.

Step Structure
Three steps: local weight calculation,

interdependent effects, and global
weight computation.

Three steps: fuzzy synthetic extent,
fuzzy ranking, and relative

preference calculation.

Mathematical Foundation Based on fuzzy optimization
with constraints.

Based on fuzzy arithmetic means and
possibility theory.

Handling of Inconsistency The consistency index measures
deviation from perfect consistency.

Relies on fuzzy ranking to compare final
fuzzy scores.

Global Weight Calculation
Local weights are multiplied by the
interdependency matrix to obtain

global weights.

Final weights are determined by fuzzy
synthetic extent and relative preferences.

Complexity
Relatively more

computationally intensive due to
non-linear programming.

Computationally simpler due to direct
use of fuzzy arithmetic.

Advantages Suitable for complex,
interdependent criteria.

Simpler approach, more intuitive
ranking of criteria.

4. Experimental Results and Discussion
Here, the two approaches of FANP are used to calculate the final weights of the

extracted set of factors and sub-factors in Python (versions 3.1 and 3.2). The factors and
sub-factors to be used in the model were determined by the expert team. Fuzzy pairwise
comparison matrices used to calculate factor and sub-factor weights were also formed by
the same team. The application is performed based on the steps provided in the previous
section and explained step by step together with the results.

4.1. Results of FANP Approach A

Local and global weights of the factors and sub-factors are calculated using the FANP
approach A in this section. The FANP questionnaire was presented to the expert team
and was completed by them using the scale provided in Table 2. The aggregated TFNs
associated with each comparison are calculated and form the upper triangle of the pairwise
comparison matrices. The lower triangle of the pairwise comparison matrices is calculated
by inverting the corresponding cells in the upper triangle. For instance, since the aggregated
TFN for reliability and agility is calculated (1.31, 1.81, 2.94), the aggregated TFN for agility
and reliability is obtained as (0.34, 0.55, 0.76). Obviously, all the TFNs on the main diagonal
are (1, 1, 1). In Table 4, the local weights assigned to the primary factors—reliability,
responsiveness, agility, and cost—are presented, along with their corresponding consistency
index of λ = 0.76. Tables 5–8 showcase the local weights allocated to the sub-factors linked
to the primary factors—reliability, responsiveness, agility, and cost. Figure 3 displays the
calculated consistency indices, which determine the consistency of the pairwise comparison
matrices. An index of 0.6 or higher is generally deemed acceptable. The next step involves
extracting interdependent effects, which are then presented in Table 9.

Table 4. Local weights of primary factors under FANP Approach A.

Criteria Reliability Responsiveness Agility Cost Local Weight

Reliability (1, 1, 1) (0.6, 1.07, 5.26) (1.31, 1.81, 2.94) (0.64, 1.15, 5.26) 0.34
Responsiveness (0.19, 0.93, 1.67) (1, 1, 1) (1.37, 1.75, 2.44) (0.68, 1.16, 3.84) 0.31

Agility (0.34, 0.55, 0.76) (0.41, 0.57, 0.73) (1, 1, 1) (0.78, 1.16, 2.27) 0.18
Cost (0.19, 0.87, 1.55) (0.26, 0.86, 1.46) (0.44, 0.86, 1.28) (1, 1, 1) 0.17
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Table 5. Local weights of sub-factor reliability under FANP Approach A.

Reliability Accuracy Safety Ease of
Installation and Use

User Control
and Freedom Local Weight

Accuracy (1, 1, 1) (0.41, 0.69, 2.17) (0.99, 1.61, 4.34) (0.53, 0.91, 3.22) 0.28
Safety (0.46, 1.45, 2.44) (1, 1, 1) (1, 1.44, 2.63) (0.85, 1.23, 2.22) 0.29

Ease of installation and use (0.23, 0.62, 1.01) (0.38, 0.69, 1) (1, 1, 1) (0.32, 0.46, 0.84) 0.16
User control and freedom (0.31, 1.09, 1.87) (0.45, 0.81, 1.17) (1.18, 2.15, 3.12) (1, 1, 1) 0.27

Table 6. Local weights of sub-factor responsiveness under FANP Approach A.

Responsiveness Feedback Setup Time Maximum
Usage Time

Interaction
Method

Information
Update Gap

Local
Weight

Feedback (1, 1, 1) (0.95, 1.51, 3.70) (0.74, 1.08, 2.04) (0.41, 0.66, 1.66) (0.47, 0.66, 1.15) 0.20
Setup time (0.27, 0.66, 1.05) (1, 1, 1) (0.45, 0.73, 1.96) (0.48, 0.81, 2.5) (0.38, 0.52, 0.83) 0.15

Maximum usage time (0.49, 0.92, 1.35) (0.51, 1.37, 2.23) (1, 1, 1) (0.45, 0.63, 1.19) (0.44, 0.66, 1.3) 0.17
Interaction method (0.6, 1.5, 2.4) (0.4, 1.23, 2.06) (0.84, 1.53, 2.22) (1, 1, 1) (0.69, 0.96, 1.56) 0.23

Information update gap (0.87, 1.5, 2.13) (1.2, 1.92, 2.64) (0.77, 1.51, 2.25) (0.64, 1.04, 1.44) (1, 1, 1) 0.25

Table 7. Local weights of sub-factor agility under FANP Approach A.

Agility Supported
Tech. Expandability Operating

Environment Operating Range Local Weight

Supported technology (1, 1, 1) (0.64, 0.9, 1.51) (1.02, 1.37, 2.08) (0.43, 0.66, 1.51) 0.26
Expandability (0.66, 1.11, 1.56) (1, 1, 1) (0.69, 1, 1.81) (0.64, 0.84, 1.21) 0.25

Operating environment (0.48, 0.73, 0.98) (0.55, 1, 1.45) (1, 1, 1) (0.62, 0.83, 1.25) 0.21
Operating range (0.66, 1.5, 2.34) (0.82, 1.19, 1.56) (0.8, 1.2, 1.6) (1, 1, 1) 0.28

Table 8. Local weights of sub-factor cost under FANP Approach A.

Costs Purchase Cost Operating Cost Maintenance Cost Warranty Cost Depreciation Cost Local Weight

Purchase (1, 1, 1) (0.7, 0.91, 1.42) (0.45, 0.75, 1.31) (0.73, 1.1, 1.66) (1.13, 1.51, 2.07) 0.19
Operating (0.7, 1.1, 1.42) (1, 1, 1) (0.56, 0.95, 1.55) (1.14, 1.61, 2.13) (1.18, 1.67, 2.27) 0.23

Maintenance (0.76, 1.33, 2.22) (0.64, 1.05, 1.78) (1, 1, 1) (1.4, 1.68, 2.43) (1.69, 2.08, 2.70) 0.28
Warranty (0.6, 0.91, 1.36) (0.47, 0.62, 0.87) (0.41, 0.59, 0.71) (1, 1, 1) (0.91, 1.15, 1.42) 0.16

Depreciation (0.42, 0.62, 0.88) (0.44, 0.6, 0.84) (0.37, 0.48, 0.59) (0.7, 0.87, 1.09) (1, 1, 1) 0.14

Figure 3. The consistency of the pairwise comparison matrices.
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Table 9. The interdependent weights of the criteria.

Criteria Reliability Responsiveness Agility Costs

Reliability 0.79 0.09 0.11 0.05
Responsiveness 0.08 0.74 0.15 0.01

Agility 0.06 0.10 0.66 0.11
Costs 0.07 0.07 0.08 0.82

Using the interdependent weights reported in Table 9, the global weights of the criteria
are calculated using the following:

GWCriteria =


Reliability

Responsiveness
Agility
Costs

 =


0.75 0.09 0.11 0.05
0.12 0.74 0.15 0.01
0.06 0.10 0.66 0.11
0.07 0.07 0.08 0.83

×


0.34
0.31
0.18
0.17

 =


0.311
0.299
0.189
0.201


Global weights for sub-factors are calculated by utilizing interdependent weights of

the factors and local weights of the sub-factors. Table 10 shows that the highest score of
0.311 is attributed to reliability, making it the most crucial factor. It is closely followed
by responsiveness, which is scored at 0.299. The third and fourth factors, namely costs
and agility, are scored at 0.201 and 0.189, respectively. As a result, it can be concluded
that the two most important criteria are reliability and responsiveness, while the third and
fourth positions are occupied by costs and agility, respectively. In the evaluation of XR
systems, the sub-factors that belong to the reliability category are safety, accuracy, user
control, and freedom, which are deemed the most important. On the other hand, the
sub-factors belonging to the responsiveness category, namely information update gap,
interaction method, and feedback, are ranked fourth, fifth, and sixth, respectively. Warranty
and depreciation costs are considered the least significant criteria in this matter.

Table 10. Global weight and rank for factors and sub-factors under FANP Approach A.

Criteria Sub-Factors Global Weight Rank

Reliability

Safety 0.090 1
Accuracy 0.087 2

User control and freedom 0.084 3
Ease of installation and use 0.049 10

Responsiveness

Information update gap 0.075 4
Interaction method 0.068 5

Feedback 0.060 6
Maximum usage time 0.051 9

Setup time 0.045 14

Costs

Maintenance cost 0.056 7
Operating cost 0.046 13
Purchase cost 0.038 16
Warranty cost 0.032 17

Depreciation cost 0.028 18

Agility

Operating range 0.053 8
Supported technology 0.049 10

Expandability 0.047 12
Operating environment 0.040 15

4.2. Results of FANP Approach B

In approach B, the criteria weights are determined by utilizing the pairwise comparison
matrices from approach A. This is achieved by first calculating the fuzzy synthetic extent
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for each criterion, as reported in Table 11. Then, the weights for primary factors and
sub-factors are derived and are depicted in Tables 12–16. Utilizing these local weights, the
global weights are computed and reported in Table 16. According to the findings, reliability
ranks as the most significant primary factor, followed by responsiveness, cost, and agility.
Within the reliability category, safety, user control and freedom, and accuracy emerge as
the top three most crucial sub-factors.

Table 11. The fuzzy synthetic extent for primary factors and sub-factors.

Primary Factors Sub-Factors Fuzzy Synthetic Extent

Reliability (0.11, 0.30, 1.29)
Accuracy (0.10, 0.25, 0.97)

Safety (0.11, 0.30, 0.75)
Ease of installation (0.06, 0.16, 0.35)

User control and freedom (0.10, 0.29, 0.64)

Responsiveness (0.10, 0.29, 0.80)
Information update gap (0.11, 0.16, 0.55)

Interaction method (0.08, 0.15, 0.54)
Feedback (0.08, 0.12, 0.56)

Maximum usage time (0.07, 0.11, 0.41)
Setup time (0.06, 0.09, 0.43)

Costs (0.06, 0.21, 0.47)
Maintenance cost (0.15, 0.20, 0.50)

Operating cost (0.13, 0.18, 0.41)
Purchase cost (0.11, 0.15, 0.37)
Warranty cost (0.09, 0.12, 0.26)

Depreciation cost (0.08, 0.10, 0.22)

Agility (0.08, 0.20, 0.42)
Operating range (0.14, 0.30, 0.54)

Supported technology (0.14, 0.24, 0.51)
Expandability (0.13, 0.24, 0.46)

Operating environment (0.12, 0.22, 0.39)

Table 12. Local weights of primary factors under FANP Approach B.

Criteria
Comparing Synthetic Index

Raw Weights Local Weight
Reliability Responsiveness Agility Cost

Reliability - 1.00 1.00 1.00 1.00 0.282
Responsiveness 0.98 - 1.00 1.00 0.98 0.277

Agility 0.75 0.78 - 0.95 0.75 0.212
Cost 0.81 0.83 1.00 - 0.81 0.228

Table 13. Local and raw weights of sub-factor reliability under FANP Approach B.

Reliability
Comparing Synthetic Index

Raw
Weights

Local
WeightAccuracy Safety Ease of

Installation and Use
User Control
and Freedom

Accuracy - 0.94 1.00 0.95 0.94 0.26
Safety 1.00 - 1.00 1.00 1.00 0.28

Ease of installation and use 0.75 0.63 - 0.65 0.63 0.18
User control and freedom 1.00 0.99 1.00 - 0.99 0.28
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Table 14. Local and raw weights of sub-factor responsiveness under FANP Approach B.

Responsiveness
Comparing Synthetic Index

Raw
Weights

Local
WeightFeedback Setup Time Maximum

Usage Time
Interaction

Method
Information
Update Gap

Feedback - 1.00 1.00 0.94 0.90 0.90 0.20
Setup time 0.93 - 0.95 0.86 0.81 0.81 0.18

Maximum usage time 0.98 1.00 - 0.90 0.85 0.85 0.19
Interaction method 1.00 1.00 1.00 - 0.96 0.96 0.21

Information update gap 1.00 1.00 1.00 1.00 - 1.00 0.22

Table 15. Local and raw weights of sub-factor agility under FANP Approach B.

Agility
Comparing Synthetic Index

Raw
Weights

Local
WeightOperating

Range
Operating

Range
Operating

Range
Operating

Range

Supported technology - 1.00 1.00 0.86 0.86 0.25
Expandability 1.00 - 1.00 0.85 0.85 0.25

Operating environment 0.92 0.92 - 0.75 0.75 0.22
Operating range 1.00 1.00 1.00 - 1.00 0.29

Table 16. Local and raw weights of sub-factor cost under FANP Approach B.

Costs
Comparing Synthetic Index

Raw
Weights

Local
WeightPurchase

Cost
Operating

Cost
Maintenance

Cost
Warranty

Cost
Depreciation

Cost

Purchase cost - 0.89 0.80 1.00 1.00 0.80 0.22
Operating cost 1.00 - 0.92 1.00 1.00 0.92 0.25

Maintenance cost 1.00 1.00 - 1.00 1.00 1.00 0.27
Warranty cost 0.84 0.70 0.58 - 1.00 0.58 0.16

Depreciation cost 0.68 0.53 0.38 0.86 - 0.38 0.10

In analyzing the results from Tables 10 and 17, several key insights emerge. The
calculated global weights and ranks for the factors and sub-factors provide a clear picture
of the relative importance of each criterion in the selection of XR systems in healthcare.

According to Figure 4, it is evident that ‘Reliability’ is the most significant primary
factor, emphasizing the critical nature of system dependability in healthcare applications.
Within the reliability category, ‘Safety’ is ranked the highest, underscoring the paramount
importance of patient safety in healthcare technology. The high rankings of ‘Accuracy’
and ‘User Control and Freedom’ further highlight the need for precise and user-friendly
XR systems.

In the category of ‘Responsiveness’, the ‘Information Update Gap’ and ‘Interaction
Method’ are ranked as more critical than other sub-factors like ‘Feedback’ and ‘Setup
Time.’ This suggests a preference for up-to-date information and interactive methods in XR
systems, which are crucial for real-time applications in healthcare.

For ‘Costs’, ‘Maintenance Cost’ receives a higher weight compared to ‘Operating Cost’
or ‘Purchase Cost’, indicating that long-term maintenance is a more significant concern
than initial purchase or operational expenses. This reflects the healthcare industry’s focus
on sustainable and cost-effective solutions. The lower significance of ‘Warranty Cost’ and
‘Depreciation Cost’ perhaps points to a lesser concern over the economic lifespan of the
technology in favor of performance and maintenance aspects.
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Table 17. Global weight and rank for factors and sub-factors under FANP Approach B.

Criteria Sub-Factors Global Weight Rank

Reliability

Safety 0.079 1
Accuracy 0.074 3

User control and freedom 0.078 2
Ease of installation and use 0.050 13

Responsiveness

Information update gap 0.061 6
Interaction method 0.059 7

Feedback 0.055 9
Maximum usage time 0.052 12

Setup time 0.050 15

Costs

Maintenance cost 0.062 4
Operating cost 0.057 8
Purchase cost 0.050 14
Warranty cost 0.036 17

Depreciation cost 0.024 18

Agility

Operating range 0.079 5
Supported technology 0.074 10

Expandability 0.078 11
Operating environment 0.050 16

 
Figure 4. Visual schema comparing sub-criteria rankings across two FANP approaches (A and B) for
evaluating XR systems in healthcare. Sub-criteria are grouped under four primary criteria—reliability,
responsiveness, agility, and costs—ordered by overall importance (1 = most important).

Lastly, within the ‘Agility’ category, the primary focus seems to be on ‘Operating
Range’, which suggests a preference for XR systems that offer a broad range of operation,
essential for diverse healthcare settings.

4.3. Comparative Analysis and Managerial Insights

This section presents a comparative analysis of the results obtained from the two
state-of-the-art fuzzy approaches of ANP to identify the most critical primary factors
and sub-factors for evaluating XR systems in healthcare. FANP approach A offers a
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distinctive advantage through its innovative use of fuzzy pairwise comparison judgments,
replacing exact numerical values with a non-linear programming transformation for the
initial fuzzy prioritization problem. Unlike traditional fuzzy prioritization techniques, this
approach generates crisp weights by addressing both consistent and inconsistent fuzzy
comparison matrices, thereby eliminating the necessity for additional aggregation and
ranking procedures. On the other hand, FANP approach B excels in simplicity and ease of
implementation. Its straightforward steps make it more accessible compared to other fuzzy
approaches. Additionally, this approach accommodates complex interrelationships among
decision levels and attributes, allowing for a more comprehensive analysis. However, it
relies on fuzzy arithmetic mean and necessitates a fuzzy ranking procedure for comparing
final fuzzy scores. Kendall’s tau coefficient and Spearman’s rank correlation coefficient
are utilized to evaluate the statistical association between the ranks of the data. These
coefficients are computed to examine if there is a notable difference in the rankings of
sub-factors. The outcomes of these calculations are presented in Table 18, where the values
of Kendall and Spearman coefficients are reported along with their respective p-values.
Both Kendall’s tau and Spearman’s rank correlation coefficients indicate a strong positive
correlation between the sub-factor rankings. The p-values for both tests are very small,
indicating that the results are statistically significant at conventional levels. The Spearman
coefficient is higher than the Kendall coefficient, suggesting that the ranking agreement
between the two methods is even stronger when considering the actual rank values rather
than just the relative ordering.

Table 18. Result of statistical testing.

Test Correlation Coefficients p-Value

Kendall’s Tau 0.773 7.72 × 10−6

Spearman’s 0.912 1.28 × 10−7

As illustrated in Figure 5, both approaches yield the same ranking of primary factors,
highlighting the significance of reliability as the topmost factor, followed by responsiveness,
cost, and agility. Figure 6 illustrates that while the top three important sub-factors are iden-
tical between the two approaches, their relative order is slightly varied. Both approaches
consider safety to be the most critical aspect within the reliability category, but there are
discrepancies in the rankings of accuracy and user control and freedom. Both approaches
also consider warranty and depreciation costs as the least significant criteria.

0.16

0.21

0.26

0.31

0 1 2 3 4 5

FANP approach B

FANP approach A

Figure 5. Difference between the primary factors’ local weights.

The proposed decision model provides a systematic and structured approach to eval-
uating the performance of XR systems based on the criteria and sub-criteria identified as
important for healthcare applications. These criteria include reliability, responsiveness, agility,
and cost aspects of these technologies. Using this model, along with the guideline provided
in Table 19, healthcare organizations (e.g., hospital management or procurement officers) can
make well-informed decisions about selecting the most suitable XR system based on their
specific needs and preferences. The model also provides a quantitative basis for comparing
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different XR systems, enabling decision-makers to prioritize and weigh different factors
based on their relative importance. Overall, it can help improve the selection of XR systems
in healthcare, leading to better outcomes for patients and providers alike.

0.02
0.04
0.06
0.08

0.1
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FANP approach B
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Figure 6. Comparison of global weights between FANP approach A and FANP approach B in the
context of XR applications in healthcare. Each point on the line represents the global importance
weight of a specific sub-criterion. The orange squares represent results from approach B, and the
blue diamonds represent results from approach A. Higher values indicate greater importance in
decision-making.

Table 19. General Guideline for using the XR system evaluation model.

1- Understand the Decision Context:
- Consider the Intended Use Case: The importance of different evaluation criteria (reliability, responsiveness,

agility, and cost) may vary depending on the specific application of the XR system. For example, reliability may
be critical in healthcare applications, while cost may be a larger factor in industries with tighter budgets.

- Weights Based on Needs: The model uses FANP-derived weights to provide a standardized comparison.
2- Select XR Systems to Evaluate:
- Identify Relevant Technologies: The model has been applied to a representative set of XR systems from various

manufacturers, including AR, VR, and MR technologies.
- Ensure Comprehensive Coverage: Ensure that the selected systems represent a broad range of XR capabilities

relevant to the intended application.
3- Evaluate Systems Using Established Criteria:
- Criteria for Evaluation: Each system is assessed across four primary criteria: reliability, responsiveness, agility,

and cost, with 18 sub-factors under these categories.
- Rate Systems Based on Available Data: Manufacturer specifications, third-party reviews, and technical literature

are used to rate each system on a scale of 1 to 10 for each sub-factor.
- Normalize and Weight Scores: Scores are normalized on a 1-to-10 scale and then weighted based on the

FANP-derived importance of each criterion, ensuring consistency and allowing for a fair comparison.
4- Compare and Analyze the Results:
- Quantitative Comparison: Weighted scores are used to compare different XR systems. The model provides a

clear, data-driven approach to highlight the strengths and weaknesses of each system.
- Identify Best Fit: Based on the evaluation results, prioritize systems that best meet the intended needs, ensuring

alignment with operational goals and budget constraints.

5. Performance Evaluation of Existing XR Technologies Based on the
Proposed Criteria

It is important to note that the relative importance of the evaluation criteria proposed
in this study may vary depending on the intended use case of the XR system. For instance,
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applications in surgical training may prioritize accuracy and feedback responsiveness,
while remote collaboration solutions might emphasize operating range and ease of use.
Chiang et al. developed a VR simulator aimed at reducing the training time for cardiol-
ogists pursuing certification and experience in intracardiac interventions. They assessed
the simulator’s efficacy, and their findings were fully consistent with the results of our
study. Notably, their evaluation highlighted ‘accuracy’ as the highest priority, followed by
‘responsiveness’ and then ‘cost’ as the next most important factors [60]. However, for the
purpose of a consistent and generalizable comparison across various XR technologies, we
rely on the weighting derived from the FANP model developed in this study. To assess the
performance of widely available XR systems in the market, we selected eight representative
devices encompassing a mix of AR, VR, and MR technologies. These include Microsoft
HoloLens 2, Meta Quest 3, Magic Leap 2, Varjo XR-4, HTC Vive Pro 2, Apple Vision Pro,
Pico 4 Enterprise, and RealWear Navigator 500. Each system was evaluated against the 18
sub-factors categorized under the four primary criteria: reliability, responsiveness, agility,
and cost. The scoring for each sub-factor was informed by manufacturer specifications,
third-party technical reviews, and relevant literature (see Section 2), with scores normalized
on a 1-to-10 scale and then weighted based on the FANP-derived importance. The detailed
scoring tables for each XR system are available in Appendix A.

Figure 7 presents a detailed, at-a-glance comparison of strengths and weaknesses
across each criterion and illustrates a trade-off between cost-efficiency and high-end tech-
nical capability. Devices such as the Meta Quest 3 and Pico 4 Enterprise offer attractive
affordability and ease of use but tend to score slightly lower in clinically critical dimensions
like safety and accuracy. In contrast, premium systems such as Apple Vision Pro and Varjo
XR-4 deliver top-tier performance but at a significantly higher cost. These distinctions
underscore the importance of contextualizing XR system selection based on the operational
goals and constraints of the intended healthcare environment.

As displayed in Figure 7, Apple Vision Pro and Microsoft HoloLens 2 consistently
demonstrate high scores, with most sub-factor evaluations above 8 out of 10. These systems
particularly excel in critical dimensions such as accuracy, information update gap, user
control and freedom, and safety. Their uniformly strong performance highlights their
suitability for high-stakes healthcare applications, including surgical visualization, complex
diagnostics, and real-time guided interventions, where immersive precision and system
reliability are paramount. RealWear Navigator 500 and Pico 4 Enterprise, by contrast, show
their strengths in cost-related and usability-focused dimensions. These systems exhibit top
scores in purchase cost, operating cost, maintenance cost, and ease of installation and use,
while still maintaining competitive scores in responsiveness-related sub-factors such as
setup time and maximum usage time. Although they do not match the premium devices
in terms of spatial fidelity or interaction precision, their affordability and operational
durability make them well-suited for deployment in resource-limited healthcare settings,
as well as for training, remote collaboration, and telehealth applications.

As displayed in Figure 7, Varjo XR-4 stands out with a perfect score in both accu-
racy and supported technology, reflecting its high-resolution display and hybrid MR/VR
capabilities. This makes it particularly advantageous in applications requiring visual re-
alism and high-performance computing, such as advanced simulation environments or
neurosurgical planning. Similarly, Magic Leap 2 scores highly in areas such as interac-
tion method and safety, aligning it with AR applications like physical therapy, patient
education, and in-field visualization. Notably, HTC Vive Pro 2 scores relatively well in
usage-related dimensions like ease of installation and maximum usage time but falls behind
in several cost and agility-related metrics, including depreciation cost and setup time. This
variability suggests that while the device may be suitable for training and demonstration
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purposes, it may be less optimal for sustained clinical deployment. To better understand
how the primary evaluation criteria contribute to the overall performance of each XR
system, Figure 8 displays a stacked bar chart summarizing the weighted contributions of
reliability, responsiveness, agility, and cost.

 

Figure 7. Heatmap displaying expert-assigned scores (on a scale of 1–10) for each sub-criterion
across eight XR devices used in healthcare training and simulation. Rows represent 20 sub-criteria,
while columns represent different XR devices. Higher scores (shown in darker blue) indicate better
performance on the corresponding sub-criteria. The color gradient legend on the right reflects the
score scale from 3 (lowest) to 10 (highest).

Figure 8 reveals not just which XR systems score highest, but how their strengths
are structurally composed across the four decision-making criteria. One immediately
noticeable insight is that top-performing systems do not rely equally on all factors—rather,
each has a unique profile of emphasis. For instance, while Apple Vision Pro and Microsoft
HoloLens 2 both sit at the top of the performance ranking, their category distributions
show subtle but meaningful differences: Apple Vision Pro demonstrates a relatively more
diversified contribution across reliability, responsiveness, and agility, whereas Microsoft
HoloLens 2’s strength is more concentrated in responsiveness and reliability. This suggests
that Apple’s system may offer greater adaptability across varied environments and use
cases, while HoloLens 2 may be more optimal for applications demanding fast, stable
interaction in known settings.
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Figure 8. Factors’ contributions to the total score (sorted by the overall score).

Interestingly, the cost contribution is highest among mid-ranking systems such as Re-
alWear Navigator 500 and Pico 4 Enterprise. These systems exhibit a value-driven profile,
where high scores are derived in part from low operating and acquisition costs, reinforcing
their suitability for scaled implementations, workforce training, or budget-conscious clinical
environments. In contrast, high-end systems such as Varjo XR-4 show a minimal cost contri-
bution, reflecting that their performance is achieved through premium technical specifications
rather than economic efficiency. This divergence underscores that systems optimized for tech-
nical superiority may inherently require more investment, even if their overall performance
ranks similarly to more economical alternatives. Another insight emerges from the respon-
siveness category, which appears as a common strength across nearly all devices—indicating
that most XR manufacturers are prioritizing real-time feedback, interaction fluidity, and
operational responsiveness. This might be a result of competitive differentiation in user expe-
rience, especially as XR expands into healthcare settings where latency, gesture recognition,
and feedback are essential for clinician and patient engagement. A complementary view
is provided in Figure 9, which visualizes each XR system as a bubble in a 2D plane with
purchase cost on the x-axis and total weighted score on the y-axis.

Figure 9 illustrates a multidimensional lens on XR system performance by simul-
taneously visualizing purchase cost, total weighted score, safety, and maximum usage
time. From this perspective, what becomes clear is that value is not linearly tied to
investment—while systems like the Apple Vision Pro and Varjo XR-4 occupy the upper-
right region, indicating high performance and high cost, several mid-cost devices such as
RealWear Navigator 500 and Pico 4 Enterprise achieve nearly comparable performance
scores with significantly lower price points and longer operational durations. Moreover, by
encoding safety as color intensity and usage time as bubble size, the plot reveals an impor-
tant operational insight: some lower-cost devices like RealWear deliver not only economic
efficiency but also durability and reliability, key for extended use in resource-constrained
or mobile healthcare environments. This shifts the interpretation of “performance” from
a purely technical measure to one that incorporates practical usability and sustainability,
especially relevant for broader adoption across healthcare contexts. While our evaluation
offers a comprehensive comparison of XR devices using a structured set of criteria, several
limitations warrant consideration. First, the scoring of individual sub-factors relied on
secondary sources such as manufacturer specifications, third-party technical reviews, and
peer-reviewed literature. Although these sources are valuable and commonly used in
technology assessments, they may not fully capture real-world performance, particularly
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in clinical settings. To mitigate this limitation, we employed cross-referencing data from
multiple independent sources whenever possible to ensure greater accuracy and consis-
tency in the assigned scores. Additionally, all scores were normalized to a consistent 1–10
scale to allow meaningful comparison across devices and sub-criteria. While we aimed to
standardize the scoring process, some subjectivity remains unavoidable. To reduce this risk,
the weighting of sub-factors was determined using the FANP, which incorporates expert
judgment in a structured and consistent manner. This approach ensures that the influence
of any individual subjective assessment is moderated by collective expert input.

 
Figure 9. Total score vs. purchase cost: bubble size = max usage time | color = safety score.

6. Conclusions
Although the capabilities of XR systems in healthcare have not yet been fully explored,

they can offer significant benefits for improving patient care in innovative and effective
ways. We propose the first comprehensive FANP-based decision support system (DSS)
specifically designed to evaluate XR technologies in healthcare. This framework inte-
grates the SCOR model with FANP to systematically assess XR technologies by prioritizing
key evaluation factors across four dimensions—reliability, responsiveness, agility, and
cost—encompassing a total of 18 criteria. These factors are identified by a hybridization of
the SCOR model, a literature survey, and experts’ knowledge and experience. To determine
the importance of these factors and sub-factors, an integrated fuzzy ANP approach is used.
Two fuzzy approaches for the ANP method from the literature are utilized, and the results
are analyzed to compare the relative weights of all the identified factors. After calculating
Kendall’s Tau and Spearman’s rank correlation coefficients, the results indicate a robust
positive correlation between the rankings obtained by the two fuzzy approaches. The appli-
cation of this framework to eight prominent XR systems highlighted performance trade-offs
and helped identify domain-specific system strengths. Insights from the comparative anal-
ysis and sensor-based evaluation were discussed to guide procurement and development
decisions in healthcare contexts. By utilizing the proposed Decision Support System, the
selection of XR systems in healthcare can be enhanced, resulting in improved outcomes for
both patients and providers. While this research provides a solid foundation for XR system
evaluation in healthcare, there are natural areas for extension. The expert-driven scoring
and weighting process, while rigorous, could be further strengthened by incorporating
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a broader range of perspectives or real-time user feedback. Additionally, as this study
focused on a structured pre-market evaluation, future work could complement the model
with longitudinal benchmarking using field data such as clinician satisfaction, patient
outcomes, and user analytics. Tailoring the framework for specific clinical applications and
integrating evolving sensing and AI technologies also represent meaningful directions to
enrich and adapt the model for ongoing advancements in XR.
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GSR Galvanic Skin Response
TFN Triangular Fuzzy Number
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Appendix A

Table A1. HoloLens II.

Score Justification

Accuracy 9 Clinically used; FDA clearance for some applications.

Depreciation cost 5 Excellent spatial mapping and tracking accuracy.

Ease of installation and use 8 Hand/voice control and gaze tracking.

Expandability 8 Self-contained and guided setup; minimal cabling.

Feedback 8 Integrates with Azure, Teams, and cloud platforms.

Information update gap 9 Hand gestures, voice, and eye tracking.

Interaction method 8 Clear visual and audio feedback, haptics limited.

Maintenance cost 6 ~2–3 h per charge.

Maximum usage time 6 Moderate setup; user-friendly interface.

Operating cost 7 Designed for large indoor spaces.

Operating environment 8 Strong MR capabilities.

Operating range 8 Enterprise API and developer tools available.

Purchase cost 5 Built for hospitals, clinics, and industry.

Safety 9 Relatively higher for enterprise support.

Setup time 7 Some subscription models depend on apps.

Supported technology 9 ~$3500 retail price.

User control and freedom 9 Enterprise support available.

Warranty cost 5 High upfront cost, but durable.

Table A2. Meta Quest 3.

Score Justification

Accuracy 7 Comfortable and safe for general use; limited clinical testing.

Depreciation cost 7 Decent for gaming/training; lacks professional-grade sensors.

Ease of installation and use 9 Full hand tracking and controller options.

Expandability 7 Plug-and-play; very user-friendly.

Feedback 8 Consumer cloud integration (Meta/Quest account).

Information update gap 7 Hand tracking, controllers, and voice.

Interaction method 9 Haptics and immersive visuals/audio.

Maintenance cost 8 2.5–3 h typical.

Maximum usage time 8 Rapid onboarding.

Operating cost 9 Large indoor spaces.

Operating environment 7 Excellent VR; solid passthrough MR.

Operating range 7 Strong dev ecosystem via Meta SDKs.

Purchase cost 9 Good for training, limited for clinical use.

Safety 7 Low upkeep; robust hardware.

Setup time 8 No enterprise subscription required.

Supported technology 8 ~$500–600.

User control and freedom 8 Basic consumer coverage.

Warranty cost 7 High resale market; moderate depreciation.
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Table A3. Magic Leap 2.

Score Justification

Accuracy 9 Designed with FDA-clearable medical apps in mind.

Depreciation cost 5 Great spatial awareness, depth sensing.

Ease of installation and use 7 Eye tracking, hand gestures, controller.

Expandability 8 Requires tethered compute pack; steeper learning curve.

Feedback 8 Real-time data flow, fast processing.

Information update gap 9 Eye tracking, controller, hand gestures.

Interaction method 8 Excellent visuals and audio, limited haptics.

Maintenance cost 6 ~3.5 h; tethered, so not mobile-friendly.

Maximum usage time 6 Modular setup; takes longer than standalone.

Operating cost 6 Strong indoors; light-controlled environments.

Operating environment 8 Advanced AR/MR capabilities.

Operating range 8 SDKs and enterprise support are available.

Purchase cost 5 Designed for med/industrial/enterprise use.

Safety 9 Tethered system = more upkeep.

Setup time 7 Licenses for dev tools; enterprise services.

Supported technology 9 ~$3300+.

User control and freedom 9 Enterprise support available.

Warranty cost 5 High initial cost and niche resale.

Table A4. Varjo XR-4.

Score Justification

Accuracy 10 Designed for simulation and clinical settings.

Depreciation cost 4 Industry-best visual fidelity; true-to-life imaging.

Ease of installation and use 6 Accurate tracking but tethered.

Expandability 9 PC-tethered setup, requires base stations.

Feedback 9 Lightning-fast data rendering.

Information update gap 10 Eye tracking, controllers, and hand tracking.

Interaction method 9 Visual/audio fidelity unmatched.

Maintenance cost 5 Tethered to PC; dependent on external power.

Maximum usage time 5 Requires external sensors and a PC.

Operating cost 4 Excellent in large, defined spaces.

Operating environment 8 True VR + full pass-through MR.

Operating range 9 Advanced SDKs; open dev tools.

Purchase cost 3 Built for simulators and labs.

Safety 9 Complex systems = higher upkeep.

Setup time 6 Requires a high-end PC and support tools.

Supported technology 10 ~$6000–10,000+.

User control and freedom 9 Professional plans are available but expensive.

Warranty cost 4 Niche resale market.
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Table A5. HTC Vive Pro-2.

Score Justification

Accuracy 8 Generally safe, but the physical setup is demanding.

Depreciation cost 6 Excellent tracking with base stations.

Ease of installation and use 8 Good control; lacks portability.

Expandability 6 Requires base stations but is well-documented.

Feedback 7 Low latency when set up properly.

Information update gap 8 Controllers, SteamVR compatible.

Interaction method 8 Haptics and good visual/audio quality.

Maintenance cost 7 PC-powered; session-limited only by comfort.

Maximum usage time 8 Time-intensive, but smooth once done.

Operating cost 8 Depends on base station setup.

Operating environment 6 VR only.

Operating range 6 Dev tools exist, but the ecosystem is smaller.

Purchase cost 8 Indoor use, some medical training.

Safety 6 Durable hardware.

Setup time 8 No additional subscriptions needed.

Supported technology 8 ~$1000–1200 range.

User control and freedom 7 Basic consumer-level support.

Warranty cost 6 Moderate resale value.

Table A6. Apple Vision Pro.

Score Justification

Accuracy 10 Designed with Apple’s safety-first ecosystem, with advanced sensors
and privacy-centric architecture.

Depreciation cost 4 Industry-leading dual 4K micro-OLED displays with eye tracking and depth precision.

Ease of installation and use 7 Excellent gesture/eye tracking and fluid control model.

Expandability 9 High setup complexity, but guided setup helps mitigate.

Feedback 9 Seamless iCloud and device sync, ultra-low latency.

Information update gap 10 Eye tracking, hand gestures, and voice via Siri—top-tier.

Interaction method 9 Multi-sensory (visual, spatial audio, haptic) response system.

Maintenance cost 5 ~2 h on battery; longer with external pack.

Maximum usage time 6 Requires calibration but is streamlined via software.

Operating cost 4 Indoor primary use, excellent for open space environments.

Operating environment 8 Supports AR and VR natively with realityOS.

Operating range 8 Strong Apple ecosystem integration + API support.

Purchase cost 3 Designed for controlled spaces but robust in various light.

Safety 9 AppleCare+ is available, but the cost is high.

Setup time 7 Accessories, software licensing, and the Apple ecosystem are required.

Supported technology 10 Extent of AR, VR, MR, or hybrid capabilities

User control and freedom 9 Navigation flexibility, undo options, intuitive control

Warranty cost 4 Extended warranty availability and pricing
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Table A7. Pico 4.

Score Justification

Accuracy 7 Comfortable build, good privacy policies.

Depreciation cost 7 Solid tracking, not as precise as Varjo or HoloLens.

Ease of installation and use 9 6DoF movement and controller input.

Expandability 7 Easy setup, no base stations needed.

Feedback 8 Good enterprise networking features.

Information update gap 8 Controllers and limited hand tracking.

Interaction method 8 Visual + audio feedback; tactile response limited.

Maintenance cost 8 ~2.5–3 h.

Maximum usage time 8 Fast onboarding.

Operating cost 9 Large-scale indoor spaces.

Operating environment 7 VR; AR through pass-through only.

Operating range 7 Enterprise SDK, but smaller community.

Purchase cost 9 Office, clinical, training.

Safety 7 Generally durable, low maintenance.

Setup time 8 No platform lock-in.

Supported technology 8 ~$900–1200.

User control and freedom 8 Enterprise support available.

Warranty cost 7 Moderate depreciation rate.

Table A8. RealWear Navigator 500.

Score Justification

Accuracy 7 Ruggedized and designed for high-risk industrial/medical settings.

Depreciation cost 8 Less spatial accuracy due to monocular design.

Ease of installation and use 9 Voice-only control—limits complexity but adds safety.

Expandability 6 Wearable, quick start.

Feedback 7 Cloud connectivity optimized for real-time collaboration.

Information update gap 8 Voice-only. No hand or eye-tracking.

Interaction method 6 Limited to visual/audio output.

Maintenance cost 9 Swappable batteries allow extended use.

Maximum usage time 9 Plug-and-go for most users.

Operating cost 9 Indoor and semi-outdoor use.

Operating environment 9 Primarily AR; limited MR/VR functions.

Operating range 7 Supports Android-based apps; SDK is limited.

Purchase cost 9 Extreme environments, including sterile/hazardous zones.

Safety 8 Rugged design = low failure rate.

Setup time 9 No high-cost accessories needed.

Supported technology 7 ~$2000—cost-effective.

User control and freedom 7 Enterprise extended support available.

Warranty cost 8 Low depreciation: hardware stays useful longer.
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Appendix B. Questionnaire
Dear Sir/Madam,
This questionnaire is a part of a research project titled “A multi-criteria decision-

making framework for extended reality (XR) systems’ selection in healthcare”. If you
choose to take part in this study, you will be asked to rank a set of criteria for evaluating
extended reality systems according to a hierarchical model as well as to evaluate the effect(s)
of those criteria on each other. You have the option of not answering some of the questions
and remaining in the study, and you can withdraw your participation at any time. It takes
a maximum of 15 min to complete the questionnaire.

Thank you.
Our model consists of four criteria (i.e., reliability, responsiveness, agility, and costs)

and 18 sub-criteria, defined as follows:
Reliability: The ability to perform tasks as expected.

1. Accuracy: the degree to which the result of a measurement or calculation conforms to
the correct value or a standard. This definition includes concepts such as precision
and recall.

2. Safety: the condition or state of being free from harm, injury, or loss.
3. Ease of installation and use: this includes features such as weight, if one or both hands

are free during usage, and help and documentation.
4. User control and freedom: the ability of the user to freely move around and perform

intended tasks with full control.

Responsiveness: The speed and timeliness of service delivery.

1. Feedback: refers to the response time of the system and its ability to provide real-
time feedback.

2. Setup time: the time interval necessary to prepare the system for operation.
3. Max usage time: the maximum time that the system can operate without interruption.
4. Interaction method: outlines the usability of the specific XR system. It can be vocal,

gestural, touching, physiological, or a combination of more than one method.
5. Information update gap: how fast the XR system allows updating information from/to

the central system, thus supporting a more responsive process.

Agility: The capacity to effectively sense and respond to external influences/stimuli.

1. Supported tech: it can support augmented reality, virtual reality, mixed reality, or a
combination of all.

2. Expandability: the degree to which a system could easily extend or upgrade with new
functionalities and abilities to address new requirements.

3. Operating environment: refers to the environments (indoor, outdoor, and severe) in
which the system can operate.

4. Operating range: the maximum allowable area where the system can operate.

Costs: All costs associated with operating the processes.

1. Purchase cost: the total costs paid for the acquisition of the XR system.
2. Operating cost: all the required costs related to the operation of the XR system.
3. Maintenance cost: the total costs of preserving the system.
4. Warranty cost: the cost paid for obtaining a warranty for the XR system.
5. Depreciation cost: the reduction in the initial value of the machinery resulting from

its exploitation.
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Appendix B.1. Part One: Compare the Importance

In this section, you are expected to compare the importance of the criteria and the
criterion. For instance, if you believe that in an XR system reliability is extremely more
important than responsiveness, you can fill out number 5 on the left side.

Criteria 5 4 3 2 1 2 3 4 5 Criteria
Reliability Responsiveness

Also, if you believe reliability and agility are equally important, you can choose 1.

Criteria 5 4 3 2 1 2 3 4 5 Criteria
Reliability Agility

You can rank all other criteria and sub-criteria similarly.
COMPARE CRITERIA

Criteria 5 4 3 2 1 2 3 4 5 Criteria
Reliability Responsiveness
Reliability Agility
Reliability Costs

Responsiveness Agility
Responsiveness Costs

Agility Costs

COMPARE SUB-CRITERIA 1 (Reliability)

Sub-Criteria 5 4 3 2 1 2 3 4 5 Sub-Criteria
Accuracy Safety
Accuracy Ease of installation
Accuracy User control

Safety Ease of installation
Safety User control

Ease of installation User control

COMPARE SUB-CRITERIA 2 (Responsiveness)

Sub-Criteria 5 4 3 2 1 2 3 4 5 Sub-Criteria
Feedback Setup time
Feedback Max usage time
Feedback Interaction method
Feedback Information update gap

Setup time Max usage time
Setup time Interaction method
Setup time Information update gap

Max usage time Interaction method
Max usage time Information update gap

Interaction method Information update gap
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COMPARE SUB-CRITERIA 3 (Agility)

Sub-Criteria 5 4 3 2 1 2 3 4 5 Sub-Criteria
Supported tech Expandability
Supported tech Operating environment
Supported tech Operating range
Expandability Operating environment
Expandability Operating range

Operating environment Operating range

COMPARE SUB-CRITERIA 4 (Costs)

Sub-Criteria 5 4 3 2 1 2 3 4 5 Sub-Criteria
Purchase cost Operating cost
Purchase cost Maintenance cost
Purchase cost Warranty cost
Purchase cost Depreciation cost

Operating cost Maintenance cost
Operating cost Warranty cost
Operating cost Depreciation cost

Maintenance cost Warranty cost
Maintenance cost Depreciation cost

Warranty cost Depreciation cost

Appendix B.2. Part Two: Evaluating the Effect of the Criteria on Each Other

In this section, you are expected to evaluate the effect(s) of the criteria on each other.

Criteria No Effect Little Effect Some Effect High Effect Extreme Effect
Reliability on Responsiveness
Responsiveness on Reliability

Reliability on Agility
Agility on Reliability
Reliability on Costs
Costs on Reliability

Responsiveness on Agility
Agility on Responsiveness
Responsiveness on Costs
Costs on Responsiveness

Agility on Costs
Costs on Agility

Additional Comments
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56. Dağdeviren, M.; Yüksel, İ. A fuzzy analytic network process (ANP) model for measurement of the sectoral competition level
(SCL). Expert Syst. Appl. 2010, 37, 1005–1014. [CrossRef]

57. Nilashi, M.; Ahmadi, H.; Ahani, A.; Ravangard, R.; bin Ibrahim, O. Determining the importance of hospital information system
adoption factors using fuzzy analytic network process (ANP). Technol. Forecast. Soc. Change 2016, 111, 244–264. [CrossRef]

58. Chang, D.Y. Extent analysis and synthetic decision. Optim. Tech. Appl. 1992, 1, 352–355.
59. Chang, D.Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [CrossRef]
60. Chiang, P.; Zheng, J.; Yu, Y.; Mak, K.H.; Chui, C.K.; Cai, Y. A VR simulator for intracardiac intervention. IEEE Comput. Graph.

Appl. 2012, 33, 44–57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/10106049.2019.1695958
https://doi.org/10.1007/s11356-021-14534-w
https://doi.org/10.1002/ldr.3058
https://doi.org/10.1002/hfm.20301
https://doi.org/10.1016/j.eswa.2009.05.074
https://doi.org/10.1016/j.techfore.2016.07.008
https://doi.org/10.1016/0377-2217(95)00300-2
https://doi.org/10.1109/MCG.2012.47

	Introduction 
	Literature Survey 
	Materials and Methods 
	Model Construction 
	Data Collection 
	Snowball Sampling Method 
	Questionnaire Design 

	Model Validation 
	Expert-Based Qualitative Validation: 
	Questionnaire Distribution: 

	Parameter Aggregation 
	Calculating Criteria Weights 

	Experimental Results and Discussion 
	Results of FANP Approach A 
	Results of FANP Approach B 
	Comparative Analysis and Managerial Insights 

	Performance Evaluation of Existing XR Technologies Based on the Proposed Criteria 
	Conclusions 
	Appendix A
	Appendix B
	Part One: Compare the Importance 
	Part Two: Evaluating the Effect of the Criteria on Each Other 

	References

