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A B S T R A C T   

Human behavior, despite its complexity, follows structured principles. Better understanding the underlying 
concepts of human behavior in an industrial setting can help us to create more reliable and effective collaborative 
robotic environments. In factories, robots can interact with humans in unseen situations through sensing, pro-
cessing, and predicting human behaviors. This work summarizes the efforts to express human behavior in in-
dustrial human-robot interactions (HRI) in manufacturing. For this purpose, all papers related to HRI in 
production systems, additive manufacturing, agent behavior, human cognition, cloud robotics, cooperative 
Markov decision process, multi-robot design, and collaborative robots are reviewed in this work. The discussion 
includes the existing methods, research gaps, and future research directions for envisioning a safer yet more 
efficient HRI practice. In detail, we discuss current research about human-centered HRI and robot-centered HRI 
based on the focus areas such as factorial analysis, predictive analysis, and control structures for social and/or 
industrial/manufacturing robots. In the last part, based on our findings, we report major limitations of the 
existing literature and propose future research directions such as cognitive modeling, perception development, 
interaction design, sensor-based control, and social effects in manufacturing.   

1. Introduction 

Robots are expected to have a more significant role in numerous 
aspects of our everyday lives, such as healthcare, education, entertain-
ment, defense, and security in the near future [1–4]. Societies are un-
dergoing numerous changes due to the rapid expansion of the robotics 
industry. While industrial robots can save energy, time, and resources by 
optimizing processes, service robots can change social constructs. Due to 
the inevitable co-existence of humans and robots in the coming years 
and the potential exposure of untrained end-users, robots should be 
enabled to deliver context-aware tasks. 

While Industry 4.0 focuses on optimizing factories through promot-
ing autonomy by relying on cyber-physical systems as well as internet of 
things and systems, Industry 5.0 is refining the interaction between 
humans and machines by refocusing on the human element. Many 
countries have offered strategic initiatives to implement Industry 4.0, 
and significant research efforts have been made to further develop In-
dustry 4.0 concepts [5]. Industry 5.0 is defined to complement these 
efforts by using the creativity of human specialists in cooperation with 
effective, intelligent, and precise machines and robots [6], which further 

emphasizes the need to deliver appropriate, optimal, and efficient 
human-robot interactions (HRI). 

HRI can be categorized into human-robot coexistence, cooperation, 
and collaboration as shown in Fig. 1 [7]. In the coexistence scenarios, 
the robots and humans will be dealing with unrelated tasks in 
completely separated spaces without having any contact. As a result, 
having context aware robots is not needed. In cooperation and collab-
oration scenarios, robots and humans share their workspace and work 
on related tasks. While in collaboration human and robot work on the 
same tasks, in cooperation scenarios the tasks are mainly linked through 
sequential steps. In addition, collaborative scenarios desire contact 
while cooperative ones are satisfied with any level of contact. Given the 
desire of having contact, it becomes critical to have context aware robots 
specifically in the collaborative scenarios. 

Context-aware robotics is built upon the modeling of human 
behavior in HRI, as it has been shown that people’s behavior changes 
while interacting with robots [1]. For example, Nomura et al. studied 
negative attitudes, anxiety, and communication avoidance behaviors 
because of attitude changes toward the robots’ scale and robot anxiety 
scale [1]. Cummings M. presented a framework to relate skill-, rule-, and 
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knowledge-based reasoning to expertise and uncertainty [8]. This tax-
onomy is designed to unify the conceptualization of all functional allo-
cation for autonomous systems interacting with human decision-makers 
[8]. Since agents are likely to get stuck in sub-optimal solutions in 
complicated environments, Nguyen et al. used human learning strate-
gies to adjust artificial agent behaviors in high-dimensional environ-
ments [9]. Huang et al. proposed a novel human decision-making 
behavior model for HRI to control multi-robot systems. The proposed 
human drift-diffusion model combined the traditional drift-diffusion 
model and the null-space-based behavioral control method by intro-
ducing a data-processing station and a human cognitive model [10]. As a 
result, robots must have precise knowledge about humans in different 
tasks to provide safer and more efficient interactions. 

2. Materials and methods 

In this review, our goal is to gather a detailed overview of human- 
robot interaction, focusing on human behavior and human decision- 
making in manufacturing. The methodology imbedded to select the 
recent literature developments concerning the topics of behavioral 
models for human-robot interaction is discussed here. We reviewed 
papers from 2000 to 2021 focusing on human behavioral modeling in 
HRI. Although the HRI literature is very limited between 2000 and 2016, 
there has been an increase of publications in this area since 2017. 

The complete list of keywords used in this review includes HRI, 
human decision making, manufacturing, human behavior, human 
cognition, robot cognition, cognitive robot architecture, and human 
robot collaboration. This search led to a total of 410 papers. The selected 
papers were narrowed down to 108, focusing on the intersection of HRI 
and human behavioral modeling. An additional 20 papers were 
excluded as those were in a different language. Further examination led 
to exclusion of an additional 20 papers as those could not be applied to 
manufacturing. This review is concluded by examining the most 
appropriate mechanisms to be adopted for gaining better decision and 
behavior adjustment in human-robot collaborative environments. 
Furthermore, areas where a similar assessment of human behavior is 
required and challenges for such robots to overcome have been 
identified. 

3. Results 

One of the most ambitious long-term goals of robotics research has 
been developing robots capable of seamless integration in our daily 

lives. Therefore, recognizing, interpreting, and reasoning human 
behavior is a critical skill for a robot that co-inhabits the human envi-
ronment and interacts with humans regularly. HRI, as a field of study, 
focuses on understanding, designing, and evaluating robotic systems to 
be used by or along with humans [11]. In manufacturing, robots have 
been deployed to replace or assist humans in performing repetitive or 
dangerous tasks [12]. Growing beyond assistance, not only do humans 
share their workspace with robots, but they also rely on them as col-
laborators [12]. As collaborative HRI becomes more prevalent, it is 
critical that robots understand human behavior and decision-making 
processes [13]. 

HRI literature can be divided into two main categories: Human- 
centered and robot-centered as displayed in Fig. 2. While human- 
centered HRI investigates issues such as the design and usability of 
proper interaction interfaces, robot platforms, and behaviors through 
extensive user studies, robot-centered HRI focuses on algorithms, engi-
neering innovations, and other computational approaches that would 
improve the overall performance of the interaction [13]. What differ-
entiates the human-centered and robot-centered HRI is the fundamental 
of the corresponding research. While human-centered HRI focuses on 
human cognition to develop better HRI, robot-centered HRI relies on 
better engineering the existing robotic capabilities to make seamless 
collaboration between humans and robots possible. 

As displayed in Fig. 2, the arrangement of review for HRI in this 
paper categorizes papers into factorial analysis, predictive analytics, and 
control structures for social and industrial robots in both human- 
centered and robot-centered HRI systems. While factorial analysis fo-
cuses on identifying factors that impact the HRI from a human behavior 
perspective, the predictive analytics focus on better forecasting human 
behavior in HRI and control structures evolve on the ideas of better 
controlling robots considering humans’ behavior. The distribution and 
trends of reviewed works across the years are demonstrated in Figs. 3 
and 4, respectively. 

Fig. 3a discloses most researchers (i.e., 43% of the reviewed works) 
rely on vision sensors. This can be attributed to versatility, reusability, 
and affordability of vision sensors, especially cameras. Visions sensors 
are followed by distance (21%), audition (10%), tactile (9%), force/ 
torque (5%), motion (2%), and physiological (2%) sensors. Fig. 3b 
demonstrates that literature is more concentrated on robot-centered HRI 
(i.e., 71% of the published works) compared to human-centered (41%). 
Fig. 3c demonstrates control structures is the leading focus area (64% 
followed by factorial analysis (45%) and predictive analytics (24%). 
This well aligns with the fact that 71% of the reviewed papers 

Fig. 1. Three levels of HRI and their characteristics [7].  
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approached this research problem from the robot-centered perspective. 
As displayed in Fig. 3d, 70% of the reviewed papers relied on real robotic 
environment for validation their findings, while 42% of the literature 
depended on simulations. Fig. 4a–d demonstrate the distribution of the 
literature across years 2017 to 2021 in sensor, analysis perspective, 
application area, and validation technique, respectively. 

Fig. 4a demonstrates a decrease in reliance on vision sensors over the 
years. This reduction can be a result of the decrease in sensor production 
cost over the last few years. The dominance of robot-centered HRI is 
displayed in Fig. 4b. Although some fluctuations can be observed over 

the years, the robot-centered HRI seems to be the leading perspective in 
human behavior modeling in HRI. As shown in Fig. 4c, while there have 
been some increases in research focused on factorial analysis, no certain 
conclusions could be reported on predictive analytics and control 
structures. Fig. 4d displays a decrease in using actual robots for vali-
dation purposes. This decrease can be caused by the advancements made 
in physics-based simulation modeling and emergence of game engines in 
manufacturing. 

Fig. 2. Survey structure in this paper.  

Fig. 3. The trends of sensor utilization (a.), research perspective (b.), focus area (c.), and validation technique (d.) in human behavior modeling in HRI.  

Fig. 4. The distribution of the reviewed papers based on sensor utilization (a.), research perspective (b.), focus area (c.), and validation technique (d.).  
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3.1. Human-centered HRI 

3.1.1. Factorial analysis in human-centered HRI 
Human-centered, also known as user-centered, HRI focuses on user 

perspectives and needs in a collaborative environment through studying 
aesthetic, operational, and social contextuality [14]. Masuyama et al. 
looked at human psychological phenomena in communication from the 
perspective of internal and external factors such as perception, memory, 
and emotional information [15]. Based on these, they developed an 
interactive robot system to support robot’s decision-making [15]. Their 
experiment is based on processing multi-modal information to emotion 
model and also recognizing robot behavior [15]. Sanders et al. studied 
how trust and use choice are related in HRI [16]. In their experiment, 
human subjects were asked to rate robots on a trust scale and later to 
choose between completing a task using the assistance of the rated robot 
or a human [16]. Results demonstrated that although higher trust levels 
led to more robot usage, it was highly affected by the nature of the task 
in question [16]. 

To promulgate safe human-robot cooperation in a manufacturing 
setup with privatized human-robot cooperation and training, Tsiakas 
et al. suggested a cyber-physical system (CPS) solution [17]. Papana-
giotou et al. provided five experiments to study the effects of gesture 
cognition and pose approximation on the cycle time and the range of the 
user’s motion [18]. Buerkle et al. prepared an adaptive human sensor 
experiment, which combined objective, subjective, and physiological 
scales, and machine learning [19]. Tsiakas et al. conducted an experi-
ment to recognize the minimum intrusive combination of sensors for 
efficient behavioral forecasting [17]. Urgo, Tarabini, and Tolio iused 
image processing to identify factors in workers’ behavior to extract 
knowledge related to undergoing tasks via hidden Markov models to 
cataloging possible errors, deviances from the dangerous conditions in 
real manufacturing environments [20]. 

3.1.2. Predictive analytics in human-centered HRI 
Pohlt et al. measured the effect of automated inputs, which led to a 

decreased capability in forecasting behavior and a loss of robustness of 
human-robot cooperation during gesture-based interaction [21]. To test 
the compatible behavior framework proposed by Buerkle et al., two 
assembly scenarios (manual and cooperative) were performed to predict 
realized workloads of human users [19]. Physical HRI assists an operator 
to go beyond the current capabilities of industrial robots via combining 
the user’s cognitive capability with the precision and strength of robots 
[22]. Veselic et al. proposed a framework to help operators through 
active reactions to their orders based on the context and user awareness 
[22]. This additional layer of awareness strengthened the system in 
better identifying the purpose of an operator, avoiding false predictions, 
and assisting them in their tasks [22]. Liu and Wang proposed a new 
human-robot collaborative system design corresponding to the needs of 
having better understanding of human worker’s intention in order to 
model product assembly tasks as a sequence of human motions with 
Hidden Markov prediction model [23]. Masoud et al, proposed a hand 
gesture recognition framework to identify the undergoing tasks by 
workers and evaluate the workers performances in pseudo real time 
using predictive analytics in line production of bio products [24]. 

3.1.3. Control structure in human-centered HRI 
In the Masuyama et al. study, controlling the robot’s behavior is 

based on robotic emotional model, associative memory, and also bio-
metric data [15]. Klumpp et al. developed a human-computer interac-
tion efficiency description in production logistics to address the 
management of workers in digital work settings [2]. Askarpour et al.’s 
research was a confirmation approach to analyze cooperative robotics 
applications safety with a rich non-definite formal model of user be-
haviors that obtains the dangerous situations resulting from human 
mistakes [25]. Kadar et al. prepared insights into the problems of 
automation and mixed vehicle controlling and about the theoretical and 

moral results of their limited knowledge of human performance issues 
[26]. Papanagiotou et al. researched the contribution of gesture cogni-
tion and pose approximation to the smooth introduction of cobots into 
an industrial assembly section with the human users and provided the 
action-reaction between them [18]. Moreover, operator safety and 
reduction of errors were highlighted, which led to the development of 
two control layers in the decision-making process [18]. Araiza-Illan 
et al. developed a dynamic safety solution for human-robot coopera-
tion that follows human behavior based on RGB-D cameras [27]. Okuda 
et al.’s research suggested a design methodology for a switched assist 
controller for a human-machine collaborative positioning function that 
considers a new human behavior model based on a continuous/discrete 
hybrid dynamical set [28]. Dong and Naghdy delved into the possibility 
of reconstructing human manipulation proficiencies in intricate boun-
ded motion by controlling, tracing, and learning the manipulation 
executed by the user [29]. Veselic et al. proposed a framework to 
improve traditional robotic control systems by adding context aware-
ness through state space modeling and using time varying linear 
quadratic regulator (TV-LQR) [21]. Bian et al. developed a smart HRI 
control framework for small and medium sized manufacturers. In their 
work, a real-time monitoring system of manufacturing workflow for 
smart connected worker was developed which incorporated 
state-of-the-art ML-based methodologies such as finger detection and 
text recognition for 3D printer control as well as text recognition and 
object detection for machine state recognition, and Skeleton detection 
for user motion monitoring [30]. 

3.2. Robot-centered HRI 

3.2.1. Factorial analysis in robot-centered HRI 
Trust-aware HRI, as a subset of robot-centered HRI, builds upon the 

integration of trust dynamics and trust behavior models among the robot 
and human [31]. Guo et al. proposed a trust-aware factorial framework 
through identifying factors impacting robots’ performance. Their pro-
posed framework enabled the robots to estimate a human’s trust, 
anticipate the impact of trust on their interaction, and maximize its 
objective by selecting actions [31]. Their experiments demonstrated 
that the modeling of trust could significantly impact the collaborative 
environment, where one trust model (i.e., reverse psychology) led to a 
robot manipulating a human’s trust while the other (i.e., disuse) 
restricted such an outcome [31]. The conjoint impacts of communica-
tion and social conformity on trust in HRI were investigated by Volante 
et al. [32]. The results illustrated that although human social assess-
ments had a heavier impact compared to direct robot communication, 
the conforming trust followed the group’s trust [32]. Alarcon et al. have 
sought to remove these restrictions via a mixed factorial design to test 
the effects of trust on human-human and human-robot interactions over 
time with an assertion on anthropomorphic robots in a social outline 
[33]. Social robots must conform to group norms without telling robots 
how to act by group members [34]. Fuse et al. examined whether the 
robot system creates the decision criteria for obeying group norms by 
learning from interactions through reinforcement learning [34]. Quintas 
et al. designed an experiment based on multivariate analysis of variance, 
by analyzing the samples and concentrating on the analysis of the effects 
on specificity of various approaches [35]. Takahashi et al. studied the 
impact of emotional expressions on HRI [36]. Their experiment involved 
participants playing a game of a finite-iterated prisoner’s dilemma with 
a small humanoid robot [36]. The robot could convey emotions through 
different expressions and actions (e.g., limb motions) [36]. 

Smith et al. consolidated human studies in motion, intention, and 
preference into a discretized human model (i.e., cooperative Markov 
Decision Process) that can readily be used in robotics decision-making 
algorithms [37]. Given the various and ever-changing robotics setups, 
awareness and context logic is important for gathering more effective 
service robots [38]. L. Villamar Gómez and J. Miura proposed a 
framework for service robots that incorporates ontological awareness 
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logic and HRI to interpret natural language orders [38]. Moreover, they 
provided two distinct experiments in a simulated setup for analyzing 
human behavior and compared it with the robot’s behavior [38]. Huang 
et al. proposed a new empirical robotic disassembly cell consisting of 
two cooperative robots and a human operator that can work with no risk 
in tandem for particular or parallel disassembly duties in a shared 
environment [39]. 

Chinchali et al. used a combination of procedure, control, and data 
mining algorithms addressing the proactive decision-making issue, 
enabling robots to decode human intent and use this knowledge for 
safety and task satisfaction [40]. First, they turned the trajectory of 
human behavior with high dimensions into accurate behavioral sum-
maries [40]. Moreover, they leverage formal procedures to model 
high-dimensional agent goals and information-searching behavior with 
temporal logic formulas [40]. Tokody et al. provided the possibilities of 
applying cooperative robots during the process of automation in 
metalworking [41]. For illustrating the operation of the control inter-
action outline, Medina et al. provided a psychological examination with 
naive human operators [42]. Bockenkamp et al. measured the impact of 
robotic motion on humans during cooperative working sets and 
analyzed the impacts of robotic motion on human behavior [43]. Music 
and Hirche reviewed improvements in human-robot group interaction 
[44]. Panfir et al. designed an experiment in the manufacturing setting 
and provided a case study illustrating the assimilation of the human-like 
robotics set within a collaboration application [45]. The purpose of 
Chen et al. was providing a method of assembly scheme generation and 
selection for human and robot concordant (HRC) cell assembly with 
simulation and experimental results [46]. Zhang et al. studied welder 
behavior in torch adjustment as respond to weld pool by correlating 
welding torch tendency to weld pool surface [47]. 

3.2.2. Predictive analytics in robot-centered HRI 
Sanders et al. studied how trust and use choice are related in HRI 

[16]. Results demonstrated that cooperative emotional expression by 
the robot improved cooperation from participants in Takahashi et al.’s 
study, and the prediction model were based on four prediction parts 
(“cooperative-competitive,” gender, “friendly-estranged,” and “grow-
n-up-childish”) [36]. S. Nicolas and W. Agnieszka measured contribu-
tors, demand for recognition and closure to predict perspectives on 
robots and anthropomorphic attributes on variant robots [48]. Qureshi 
et al. suggested a reinforcement learning outline in which an operator 
gains the inherent motivation-based rewards through the 
action-contingent predictable model. By using this method, the robot 
learned the social skills from the human-robot action reaction experi-
ences collected in the uncurbed environments [49]. 

As short-term or midterm predictions have relatively long-time ho-
rizons to regulate, Khan et al. created a new vision-based action-reaction 
method [50]. For the safety of human operators during robot actions, Liu 
and Tomizuka predicted the human’s future states [51]. Medina et al. 
provided a control framework for anticipatory haptic assistance where 
robot behavior adjusts for predicting uncertainty [42]. 

Quintas et al. created an outline to obtain the predicted behavior of 
the operator into descriptive situations and then translated these into an 
operator information model and used the results in probable planning 
and decision making to control HRI [35]. To increase acceptance of the 
robot by the users, Pérula-Martínez et al. suggested a decision-making 
framework based on bio-inspired notions, like incentives, drives and 
well-being that simplify the rise of natural behaviors. For controlling the 
decision-making setup, user’s preferences are considered and change the 
homeostatic procedure. 

3.2.3. Control structures in robot-centered HRI 
Yun suggested a hybrid approach combining gaze control indicator 

and conceptual measurements for social signs for selecting an appro-
priate interlocutor of socially interactive robots in a situation interacting 
with more than two humans [42]. 

Controlling the robot’s performance is closely related to improving 
the movement of robot [53]. For the implementation of cooperative 
tasks in hybrid assembly cells an intelligent decision-making method 
that allows human-robot task allocation was suggested and unified 
within a Robot Operating System framework by Tsarouchi et al. [53]. In 
most current manufacturing operations, autonomous robots are 
co-present along with human [54]. Decision-making prepares the ro-
botic users with higher compatibility, by enabling its behavior to change 
according to available information, for both the robot and human as-
sociates [54]. Oliff et al. developed an approach to effectually model 
these setups using a reinforcement learning agent capable of autono-
mous decision-making [54]. Liu and Tomizuka checked the controller 
design model of environment sharing human-robot assembly groups and 
adopted a two-layer interaction method between the person and the 
robot [51]. Chen et al. suggested a virtual reality (VR) and Kinect-based 
immersive teleoperation set to connect and control the physical and 
virtual setup [55]. By evaluating the human behavior in assembling 
intricate parts, Kang et al. suggested a geometry-independent control 
methodology for robotic assembly using adaptive accordance method 
[56]. Chu et al. provided an optimization method for empowering the 
pre-planned approach by taking into consideration the uncertainty of 
human [57]. 

Mantegh and Darbandi provided a method for robot function plan-
ning by relying on artificial intelligence and hierarchical knowledge 
demonstration [58]. Music and Hirche reviewed improvements in 
human-robot group interaction focusing on control-sharing methodol-
ogies, human behavior modeling, level of autonomy, and 
human-machine interfaces [44]. In Bhalaji et al.’s study, a multi-criteria 
decision-making method, “Decision Making Trial and Evaluation Labo-
ratory" was used to analyze and control the risk factors affecting 
human-robot interaction in the assembly task [59]. For position and 
torque control in the presence of indeterminacies changing constraints, 
Klecker et al. used a bottom-up approach to empower robust and 
adaptive learning methods for trajectory tracking [60]. Costa et al. 
created automated equipment capable of performing assembly func-
tions, which coped with all the requirements in the market, and is more 
effective than manual stations [61]. Papageorgiou et al. developed a 
passive control scheme for helping kinesthetic rectifications of the 
learned behavior in task variations by engaging the utilization of 
penetrable spherical virtual fixtures around the dynamic movement 
primitives’ that follows the human coaching’s motion [62]. Table 1 
reports the classification of the reviewed papers based on their research 
perspective, focus area, application, utilized sensors and validation 
technique. 

4. Discussion: limitations and research opportunities 

4.1. Limitations 

In the reviewed papers, there are limitations that may have caused 
negative impacts on the results or distance the research from reality. For 
instance, some researchers validated their proposed approaches through 
not fully physics-based simulation instead of real experiments or more 
advanced simulations (e.g., [2,32,38,43,69,70]). Other limitations 
include lack of generality, such as conducting experiments limited to a 
specific robot (e.g., [1,36]) or case-specific definitions of human 
cognitive behavior such as trust and trust dynamics models (e.g., [31, 
48]), emotional expressions without considering personality traces (e.g., 
[32]), or temporally fixed human behavior modeling (e.g.,[32,48,63]). 
Computational efficiency is another limitation of the discussed works, 
where exponential growth computational aspects of the modeling 
restrict the performance of the proposed approaches or lead to over-
simplification and loss of information (e.g.,[1,35,37,49,55,63]). 
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Table 1 
A summary of the surveyed papers.  

Ref. Research Perspective Focus Area Application Sensor Validation 
Technique 

Human- 
Centered 

Robot- 
Centered 

Factorial 
analysis 

Predictive 
Analytics 

Control 
Structures 

Manufacturing Social Vision Distance Audition Tactile Force/ 
Torque 

Motion Physiological Simulated 
Robot 

Real Robot 

1  ✔  ✔   ✔ ✔  ✔      ✔ 
2 ✔    ✔ ✔   ✔ ✔     ✔  
7 ✔    ✔ ✔   ✔      ✔  
8  ✔  ✔ ✔ ✔  ✔       ✔  
9 ✔    ✔ ✔   ✔      ✔ ✔ 
13 ✔  ✔    ✔ ✔       ✔  
14 ✔  ✔  ✔   ✔        ✔ 
15 ✔ ✔ ✔ ✔   ✔ ✔        ✔ 
16 ✔  ✔ ✔  ✔  ✔  ✔     ✔  
17 ✔  ✔  ✔ ✔      ✔    ✔ 
18 ✔  ✔ ✔  ✔        ✔  ✔ 
19 ✔   ✔  ✔  ✔        ✔ 
20 ✔  ✔   ✔  ✔        ✔ 
21 ✔   ✔ ✔ ✔   ✔      ✔  
22 ✔    ✔ ✔   ✔       ✔ 
23 ✔   ✔  ✔  ✔        ✔ 
24 ✔   ✔  ✔     ✔     ✔ 
25 ✔    ✔ ✔  ✔ ✔       ✔ 
26 ✔    ✔ ✔  ✔        ✔ 
27 ✔    ✔ ✔       ✔   ✔ 
28 ✔    ✔ ✔      ✔   ✔ ✔ 
29 ✔  ✔    ✔ ✔       ✔ ✔ 
30 ✔  ✔   ✔  ✔        ✔ 
31  ✔ ✔    ✔ ✔       ✔ ✔ 
32  ✔ ✔    ✔ ✔        ✔ 
33  ✔ ✔     ✔  ✔      ✔ 
34  ✔ ✔  ✔   ✔  ✔      ✔ 
35  ✔ ✔ ✔   ✔ ✔  ✔      ✔ 
36  ✔ ✔   ✔  ✔       ✔  
37  ✔ ✔   ✔  ✔   ✔    ✔  
38  ✔ ✔  ✔ ✔  ✔   ✔     ✔ 
39  ✔ ✔  ✔ ✔   ✔      ✔  
40  ✔ ✔   ✔   ✔       ✔ 
41  ✔ ✔ ✔ ✔ ✔      ✔   ✔  
42  ✔ ✔   ✔   ✔      ✔  
43  ✔ ✔  ✔ ✔  ✔   ✔     ✔ 
44  ✔ ✔   ✔    ✔     ✔  
45  ✔ ✔   ✔  ✔       ✔ ✔ 
46  ✔  ✔   ✔  ✔       ✔ 
47  ✔ ✔   ✔  ✔ ✔       ✔ 
48  ✔  ✔    ✔ ✔  ✔     ✔ 
49  ✔  ✔  ✔  ✔       ✔  
50  ✔  ✔ ✔ ✔   ✔     ✔ ✔  
51  ✔   ✔   ✔        ✔ 
52  ✔   ✔   ✔        ✔ 
53  ✔   ✔   ✔        ✔ 
54  ✔   ✔ ✔  ✔ ✔      ✔  
55  ✔   ✔ ✔      ✔    ✔ 
56  ✔   ✔ ✔   ✔      ✔  
57  ✔   ✔ ✔       ✔   ✔ 
58  ✔   ✔ ✔   ✔       ✔ 
59  ✔   ✔ ✔      ✔   ✔ ✔ 
60  ✔   ✔ ✔  ✔        ✔ 
61  ✔   ✔   ✔  ✔ ✔     ✔ 
62  ✔   ✔ ✔  ✔    ✔   ✔   
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4.2. Research opportunities 

Although robots have greatly advanced over the last few decades, 
there is space for further improvements in the HRI spectrum with 
regards to easier interaction, context awareness, mobility, safety, and 
effectiveness of automation. In addition to addressing the aforemen-
tioned limitations, the following are the directions where further 
research can greatly impact the quality of human robot interaction or 
collaboration. 

Cognition Modeling. To maximize the benefits of teamwork, it is 
essential to have complete understanding among the team members. 
This becomes more critical when the team is formed of different entities 
such as robots and humans. To address this challenge, explicit models of 
human behavior and decision-making should be developed. Aspects of 
human cognition such as trust have been studied by separate groups, but 
these efforts are usually aimed at a specific form of HRI or limited to a 
specific type of robot. As a result, there is a need to explore not only the 
modeling of trust but also address the effects of failure on trust in a more 
general context [64]. As there may be unlimited factors affecting trust, 
future research of trust modeling should focus on the development of 
general models based on measures instead of counting factors affecting 
specific cases or scenarios. The same arguments can be applied to other 
cognition modeling aspects such as emotion modeling and/or decision 
making. In addition, there are limited works on continuous self-learning 
robotic agents regarding human behavior [65]. Further research in this 
area not only enables better cognition modeling, but also enables 
personalized HRI experience for collaborating humans. 

4.2.1. Perception development 
Perception systems enable robots to grasp their surrounding envi-

ronment through sensors such as cameras or external equipment such as 
touch screens. Perception methods range from machine learning and 
artificial intelligence to fuzzy logic models and statistical approaches. 
Yan et al. have reviewed the existing perception methods in detail [66]. 
A gap in literature is evaluation of the practicality of the proposed 
methods. In other words, the existing works focus on developing high 
performance and accurate solutions without studying the computa-
tional, implementation, and maintenance costs. Requirements such as 
low computational cost and autonomy are critical in developing 
perception methods for implementing seamless HRI and further research 
should be done in this area. 

4.2.2. Interaction design 
The design of any product or procedure can significantly impact its 

delivery and acceptance. Current research relies on existing interaction 
models and designs to build HRI. These interaction designs can sub-
stantially contribute to developing better behavioral models of how 
humans understand robots and their capabilities. There is a need to 
better model humans’ understandings from robots and set the actual 
expectations of the robots’ behaviors reasonably. For safer interaction 
modeling, further research should be conducted to better understand 
aspects such as timing in interaction, physical environmental, and 
communication modes. The existing metrics for measuring success in 
HRI are elemental as reported by [67] and cannot frame the complexity 
of human and robot relations. Further work in this area can discover 
insight into human expectations of HRI. 

4.2.3. Sensor-based control 
Although robotic control is a mature field, having many commer-

cialized solutions already employed in the industry, not as many efforts 
have been implemented to regulate interaction and collaboration be-
tween humans and robots. To have a safe and collaborative environ-
ment, it is critical for robots to be aware of their surroundings. Sensor- 
based control is a flexible solution for HRI, as it enables perception to 
action in real-time. Sensors are the main requirement for establishing 
sensor-based control structures. Sensors are becoming more affordable 

and less hindersome to wear, making it easier to use them for better 
implementation of HRI. The sensors can be categorized into vision, 
audition, tactile, force, and distance groups. While vision and tactile are 
the most popular senses on HRI, the introduction of affordable and ac-
curate distance, audition, and force sensors present great research op-
portunities. At the same time, although there is some research focused 
on enabling sensor-based control for each sensor group (i.e., vision, 
audition, tactile, and distance), the same cannot be said about cross 
group sensor-based control. In addition, newer topics such as traded 
control, shared control, or hybrid control, which are variations of 
sensor-based control, require further work [68]. 

4.2.4. Social effects 
Although limited, there are some examples of research that have 

been discussed here, but a major shortcoming in the existing literature is 
the lack of studies on the social effect of HRI. In the HRI literature, the 
term “team” is usually limited to two single agents, one human, and one 
robot. While it may be true in many cases, it fails to study the impact of 
having multiple humans and robots in the team. Human behavior and 
decision-making can be significantly impacted when influenced by peers 
and friends. Similarly, the perception and sensor-based control of robots 
will be different when working with a group of humans and robots. For 
example, the use of task constraints has not been sufficiently explored 
when multiple robots are integrated to perform a specific task while 
collaborating with different humans [68]. 

5. Conclusion 

Human-robot interaction is a fast-growing field of research with 
many applications. The field addresses ongoing challenges with the 
potential of providing solutions capable of significant social and in-
dustrial impacts. Due to its interdisciplinary nature, researchers are 
required to define their research within a broader context. The first key 
point is robots should become context-aware and capable of learning 
about human behavior, especially in terms of emotion cognition and 
decision making. Knowing the context is a key factor when robots must 
act in an embodied system. Purely functional representations may not be 
sufficient, requiring the enablement of context-aware decision-making 
in robotics. This requires updating the corrected behavioral schema to 
the robot. A last point is that the presence of robots causes changes in the 
behavior of humans. In this survey paper on Human Behavior in HRI, the 
goal is to illustrate the points of contact between robotics and human 
behavior. The approach for classifying recent papers in this study is 
based on two categories of human-centered human-robot interaction 
and robot-centered human-robot interaction. Here, we are presenting a 
unified review of HRI-related problems with a focus on human behavior 
modeling through identifying important themes, discussing the limita-
tions of the existing methods, and suggesting potential directions for 
future research to find more interesting results this field. 
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