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Abstract: Intention recognition in Human–Robot Interaction (HRI) is critical for enabling
robots to anticipate and respond to human actions effectively. This study explores the
application of deep learning techniques for the classification of human intentions in HRI,
utilizing data collected from Virtual Reality (VR) environments. By leveraging VR, a
controlled and immersive space is created, where human behaviors can be closely moni-
tored and recorded. Ensemble deep learning models, particularly Convolutional Neural
Networks (CNNs), Long Short-Term Memory (LSTM), and Transformers, are trained on
this rich dataset to recognize and predict human intentions with high accuracy. While
CNN and CNN-LSTM models yielded high accuracy rates, they encountered difficulties
in accurately identifying certain intentions (e.g., standing and walking). In contrast, the
CNN-Transformer model outshone its counterparts, achieving near-perfect precision, recall,
and F1-scores. The proposed approach demonstrates the potential for enhancing HRI by
providing robots with the ability to anticipate and act on human intentions in real time,
leading to more intuitive and effective collaboration between humans and robots. Experi-
mental results highlight the effectiveness of VR as a data collection tool and the promise of
deep learning in advancing intention recognition in HRI.

Keywords: intention recognition; human–robot interaction; virtual reality; neural networks

1. Introduction
Human–Robot Interaction (HRI) refers to the ways in which humans and robots inter-

act with each other and combines the knowledge and techniques from computer science,
engineering, psychology, and design. HRI is crucial in manufacturing as it determines
the efficiency, reliability, and safety of the human–robot system, and it has the potential to
significantly improve the productivity and quality of manufacturing processes. HRI serves
to align robot capabilities with human expectations. In addition, it can enhance the overall
work environment by reducing the physical and mental workload of human workers and
enabling them to focus on more challenging and rewarding tasks.

As depicted in Figure 1, HRI can be divided into three primary categories: Human–
robot coexistence, which involves the separation of workspace between humans and
robots without the need for synchronization of actions and intentions [1]; human–robot
cooperation, where humans and robot work individually to achieve a common goal, sharing
both time and space. Advanced technologies are employed to ensure collision detection
and avoidance during this cooperation [2]; human–robot collaboration, which encompasses
scenarios where humans and robots engage in complex tasks with direct interactions.
It emphasizes explicit contact between humans and robots, highlighting a high level of
cooperation and coordination [3].
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encompasses scenarios where humans and robots engage in complex tasks with direct 
interactions. It emphasizes explicit contact between humans and robots, highlighting a 
high level of cooperation and coordination [3]. 

 

Figure 1. Three forms of human–robot interaction: (a) coexistence, (b) cooperation, and (c) collabo-
ration. 

Intention recognition is an essential aspect of collaborative HRI as it enables the robot 
to understand and respond to the actions of its human partners. In this study, we use the 
term intention to denote the underlying goal of the human, while activity refers to the 
observable motion sequence that accomplishes that goal. By recognizing human activities, 
robots can provide appropriate assistance and support, which can increase the efficiency 
and effectiveness of the collaboration between humans and robots. The recognition of ac-
tivities can also lead to better safety by allowing the robot to anticipate and respond to 
potential hazards in real time [4]. 

An important and emerging context for applying intention recognition is within VR 
environments. VR is increasingly used in the manufacturing industry to enhance the de-
sign, testing, and training processes. VR provides a safe and controlled environment for 
manufacturing engineers to test and optimize the functionality and performance of their 
products and systems [5]. It enables engineers to simulate the production process and 
identify potential issues and solutions before they arise in the actual manufacturing pro-
cess, reducing the cost and time associated with prototyping and testing. VR provides 
immersive training for manufacturing workers by offering hands-on virtual training that 
mimics real production. It enables workers to learn at their own pace and provides a safe 
environment to practice and make mistakes. Neural networks in VR environments can 
recognize and classify human activities using body posture, motion, and gestures. They 
help control and monitor worker actions for correct and safe performance and offer real-
time feedback for improved performance and reduced injury risk. The use of neural net-
works for intention recognition in VR environments in manufacturing has the potential to 
improve safety, efficiency, and productivity [6]. 

The aim of this research is to assess the viability of using neural networks to recog-
nize human intentions based on their activities in manufacturing environments. This re-
search demonstrates the potential impact of deep learning on human–robot interaction. 
The remainder of this paper is structured as follows: Section 2 presents a review of the 
relevant literature, grounding our study in the broader context of intention recognition in 
manufacturing. Section 3 outlines the methodology of our research, including data collec-
tion and processing methods, and the specific neural network models employed. Section 
4 provides the experimental design and a detailed analysis and discussion of the results. 
Finally, Section 5 concludes the paper and suggests directions for future research. 

2. Literature Review 
The contemporary manufacturing ecosystem is undergoing a transformative evolu-

tion, propelled by rapid technological advancements, and shifting paradigms of Industry 

Figure 1. Three forms of human–robot interaction: (a) coexistence, (b) cooperation, and (c) collaboration.

Intention recognition is an essential aspect of collaborative HRI as it enables the robot
to understand and respond to the actions of its human partners. In this study, we use the
term intention to denote the underlying goal of the human, while activity refers to the
observable motion sequence that accomplishes that goal. By recognizing human activities,
robots can provide appropriate assistance and support, which can increase the efficiency
and effectiveness of the collaboration between humans and robots. The recognition of
activities can also lead to better safety by allowing the robot to anticipate and respond to
potential hazards in real time [4].

An important and emerging context for applying intention recognition is within VR
environments. VR is increasingly used in the manufacturing industry to enhance the
design, testing, and training processes. VR provides a safe and controlled environment
for manufacturing engineers to test and optimize the functionality and performance of
their products and systems [5]. It enables engineers to simulate the production process
and identify potential issues and solutions before they arise in the actual manufacturing
process, reducing the cost and time associated with prototyping and testing. VR provides
immersive training for manufacturing workers by offering hands-on virtual training that
mimics real production. It enables workers to learn at their own pace and provides a
safe environment to practice and make mistakes. Neural networks in VR environments
can recognize and classify human activities using body posture, motion, and gestures.
They help control and monitor worker actions for correct and safe performance and offer
real-time feedback for improved performance and reduced injury risk. The use of neural
networks for intention recognition in VR environments in manufacturing has the potential
to improve safety, efficiency, and productivity [6].

The aim of this research is to assess the viability of using neural networks to rec-
ognize human intentions based on their activities in manufacturing environments. This
research demonstrates the potential impact of deep learning on human–robot interaction.
The remainder of this paper is structured as follows: Section 2 presents a review of the
relevant literature, grounding our study in the broader context of intention recognition
in manufacturing. Section 3 outlines the methodology of our research, including data
collection and processing methods, and the specific neural network models employed.
Section 4 provides the experimental design and a detailed analysis and discussion of the
results. Finally, Section 5 concludes the paper and suggests directions for future research.

2. Literature Review
The contemporary manufacturing ecosystem is undergoing a transformative evolution,

propelled by rapid technological advancements, and shifting paradigms of Industry 4.0 [7].
In this digitally driven landscape, human–robot collaboration emerges as a keystone to
enhancing productivity, ensuring safety, and fostering innovation [2]. Now, Industry 5.0
introduces human-centric automation that prioritizes safety and personalization alongside
productivity. However, for this collaboration to be seamless and efficient, a profound
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understanding of human activities in real time is imperative. Intention recognition bridges
this knowledge gap [3]. By enabling robots to interpret and respond to human movements
and intentions dynamically, it significantly reduces operational errors and augments human
capabilities. However, this is a challenging task arising from a multitude of factors including
background clutter, partial occlusion, variations in scale and viewpoint, and changes in
lighting, appearance, and frame resolution, among others [8].

HRI in manufacturing is a convergence of human ingenuity and robotic precision. As
we stand on the precipice of the fourth industrial revolution, this symbiotic relationship
between man and machine in manufacturing arenas is becoming increasingly paramount [9].
Historically, the manufacturing sector viewed robots as tools designed solely to enhance
productivity through repetitive, mundane tasks, often operating in isolation behind safety
barriers. These robots, while effective, had limited scopes of operation. They were utilized
in processes deemed too perilous or monotonous for human involvement. However, the
advent of advanced sensor technology, coupled with breakthroughs in artificial intelligence
and machine learning, heralded a transformative shift in HRI over decades [10]. Today,
the manufacturing landscape is dotted with ‘collaborative robots’ or ‘cobots’. Unlike their
predecessors, these machines are intricately designed to operate alongside human workers,
not just as tools but as collaborative partners, sharing tasks and responsibilities [11].

The potential to enable seamless and intuitive collaboration between humans and
robots has fueled a surge of interest in intention recognition for HRI in recent years [12].
Recognizing human intent is crucial for the development of robots that can proactively
assist humans in a wide range of tasks, from manufacturing to personal care [13–15]. This
has sparked a multidisciplinary interest among researchers in robotics, artificial intelligence,
cognitive science, and ergonomics [16]. Combining human dexterity and judgment with the
precision and endurance of robots offers numerous advantages. These include enhanced
productivity, cost efficiency, improved quality, and greater safety and wellness in the
workplace [11]. While this combination ensures tasks are completed faster and more
efficiently, cobots can operate continuously, reducing labor costs and minimizing human
errors [17]. In addition, cobots ensure consistent quality, while humans bring intricate
detailing and adaptability to the table [18]. Finally, cobots can readily handle hazardous
tasks, reducing human exposure to potential dangers. Furthermore, with the increasing
modularity of these cobots, reprogramming them to adapt to a plethora of tasks is becoming
hassle-free, offering unparalleled flexibility in manufacturing environments [19].

As the realm of HRI expands, ensuring human safety in this intertwined workspace is
paramount. This concern is more than physical barriers; it is about real-time comprehension
and reaction. Intention recognition, in this regard, becomes invaluable. By enabling robots
with the capability to interpret and predict human actions and intentions in real time,
potential mishaps can be proactively avoided [20,21].

In our research, we concentrate on ‘Intention Recognition’, a term that is sometimes
equated with ‘Activity Recognition’. This level of discernment is crucial for the devel-
opment of context-aware and intelligent systems [22,23]. VR has been used for training,
design, and collaborative tasks that involve both humans and robots [24]. Within this
framework, intention recognition plays a crucial role. By identifying human actions and
intentions in a virtual setting, VR systems not only provide a safe environment for data
collection but also facilitate the rehearsal of collaborative tasks [8].

As displayed in Figure 2, a comprehensive literature search was conducted on rep-
utable academic databases and research repositories using relevant keywords, including but
not limited to “intention recognition”, “activity recognition”, “human–robot interaction”,
“virtual reality”, and “extended reality”, as well as their combinations. The search results
were carefully filtered to remove duplicates, non-English language papers, unavailable
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documents, and unrelated studies. Notably, the number of publications related to “virtual
reality”, “intention recognition”, and “human–robot interaction” has more than doubled
between 2018 and 2023, indicating a significant growth in these areas.
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Among the emerging trends, the integration of VR has gained significant traction as
a powerful tool for developing and evaluating HRI, and in particular, human prediction
including intention recognition in HRI systems [5,6,25,26]. Researchers have proposed
various deep learning architectures, including CNNs and LSTM networks, to extract spatial
and temporal features from this multimodal data [5,27–29]. To name some of the most
recent notable studies in the field, Xia et al. proposed an XR system based on HoloLens 2
for a multimodal fusion intent recognition algorithm (MFIRA) algorithm that features the
fusion of gesture and speech information through machine learning feature–layer fusion,
as well as analysis of the conflicts between modality information [30]. Peng et al. proposed
an intention recognition model and designed a communication architecture to assist intent
sharing between production elements [31]. Xu et al. integrated virtual reality, computer
vision, and human–robot interaction methodologies for remote robot control in a proxy data
center environment, demonstrating the potential of VR-based human–robot interaction
to enhance productivity and safety in industrial applications [32]. As manufacturing pro-
cesses become more intricate and data-intensive, the role of neural networks in facilitating
sophisticated intention recognition algorithms becomes paramount [33–35]. Recognizing
human activities, particularly in VR settings, not only ensures safety and efficiency but
also paves the way for the next generation of smart manufacturing units where human
expertise and robotic precision harmoniously coexist. This study situates itself at the nexus
of these developments, aiming to enhance the symbiotic relationship between humans and
robots in the ever-evolving manufacturing sector.

Within the last few years, significant advancements have been made in the field of
behavioral recognition and its impact on human–robot interactions. Awais and Henrich
introduced a probabilistic-state-machines-based algorithm specifically designed for both
explicit and implicit intention recognition in human–robot collaboration [36].

Stiefmeire et al. employed ultrasonic sensors and Hidden Markov Models for worker
intention recognition [37], while Koskimaki et al. used a wrist-worn Inertial Measurement
Unit (IMU) and a K-Nearest Neighbor model for classifying activities on industrial assem-
bly lines [38]. Further, Maekawa et al. proposed an unsupervised approach for lead time
estimation using smartwatch and IMU sensor data [39]. Zhu et al. tackled human intention
recognition through a hidden Markov-based algorithm and deep convolution neural net-
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works, focusing on hand gestures and gait periods [40]. Sun et al. utilized muscle electrical
signals and K-Nearest Neighbor algorithms for gait motion recognition [41]. Masoud et al.
introduced a task recognition framework for grafting operations using data gloves [33].
Buerkle et al. introduced a novel approach using a mobile electroencephalogram (EEG)
to detect upper-limb movement intentions in advance by leveraging the human brain’s
ability to evaluate motor movements before execution [34]. Zhang et al. presented a
human–object integrated approach for recognizing operator intention in human–robot col-
laborative assembly, leveraging spatial-temporal graph convolutional networks for action
recognition and an improved YOLOX model for assembly part detection [35]. Zhang et al.
developed a human–robot collaboration system using Electromyography (EMG) signals,
enhancing motion intention accuracy through an optimized algorithm and deep reinforce-
ment learning, resulting in reduced human effort in sawing tasks [42]. Li et al. introduced
Proactive Human–Robot Collaboration, emphasizing a shift towards combining human
intuition with robotic precision, enabling a more anticipatory and synergistic approach to
manufacturing tasks [43]. Zhang et al. presented a predictive human–robot collaboration
model for assembly tasks using a Convolution-LSTM-based approach. Tested in a vehicle
seat assembly, the model enhanced efficiency and adaptability compared to non-predictive
methods [44]. Finally, Sun et al. presented a digital twin framework for human–robot
collaboration in assembly using an automobile generator case study, enhancing robot
cognition and adaptability with intention recognition and task knowledge [45].

Although numerous studies exist on intention recognition at the intersection of HRI
and VR, as highlighted in Figure 2, none have focused on delivering generalized tasks with
high-resolution data on body movement trajectories. By capturing detailed data on human
behavior and intention in virtual environments, VR facilitates the development of more
accurate and adaptive intention recognition models, leading to safer and more efficient
manufacturing processes. In this study, participants use wearable technology to immerse
themselves in a virtual manufacturing environment where they must complete a series of
tasks near a robot. These devices enhance immersion and continuously collect motion and
gesture data. We propose a framework that leverages these continuous data streams to
recognize the underlying tasks performed by the participants, which generate these data.

3. Materials and Methods
A breakdown of our proposed framework is illustrated in Figure 3. The proposed

framework is built upon three main modules, which are data acquisition, data processing,
and model training and evaluation.
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The Unity3D (https://unity.com/releases/editor/archive, accessed on 10 January
2020) game engine [46], the HTC Vive Pro Eye Arena system (HTC Corporation, Taoyuan
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District, Taoyuan, Taiwan) [47], and Leap Motion (Walnut Creek, CA 94597, USA) [48]
are used for creating immersive virtual environments and tracking user’s spatiotemporal
trajectories of body and hand, as displayed in Figure 4. Unity3D is a physics-based game
development engine and platform that allows developers to create interactive 2D and 3D
content, including simulations and VR experiences [46]. The HTC Vive Head-Mounted
Display (HMD) serves a dual purpose of displaying the designed virtual environment to
the users as well as tracking the trajectories of the users within this environment. Supple-
menting the HMD, three additional HTC-Vive trackers are employed, strategically attached
to the participants’ chest and elbows, to further track users’ trajectories. These trackers
further enhance our ability to capture the nuanced movements of the participants during
various activities, thereby enriching the dataset for our study. Lastly, the Leap Motion
sensor is used to model hands and track joint movements in the virtual environment and
track users’ hand joint movements. This technology enabled us to capture the fine-grained
detail of hand movements, offering us an in-depth view of how these motions factor into
different activities.
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Figure 4. Overview of the experimental setup components. (a) Sensors and connectors, including
the HTC Vive Pro headset, base stations, controllers, and trackers. (b) Computation unit used to run
the VR system and data processing. (c) Experimental environment showing a participant interacting
with the VR setup. (d) Immersive model of the virtual manufacturing environment used for intention
recognition tasks.

Each participant is equipped with the proposed setup, recording the participants’
movements during their engagement with the tasks in the virtual environment (as dictated
orally by the authors) at 300 hz. The duration and nature of these activities (Table 1) are
designed to capture a broad spectrum of actions and movements. The resulting movement
data was automatically collected and stored in an Excel file for subsequent analysis. Table 1
outlines the list of activities performed by the participants during the study. These activities
were carefully chosen based on their applicability to scenarios typically encountered within
manufacturing or industrial contexts, thus offering a diverse spectrum of human motions
for our investigation. The selection process for these activities not only leaned on their
relevance to manufacturing settings but also considered the broader literature on the
subject [49], in addition to the data available from established datasets such as UCI, WISDM,
and GAMI [50].
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Table 1. List of activities along with descriptions and context in manufacturing.

Activity Code Activity Name Activity Description Context in Manufacturing

A1 Idle Standing in place Serves as a baseline state, representing
periods of inactivity

A2 Bending Bending down Mimics actions such as interacting with
lower machinery levels

A3 Sitting Sitting on the ground/chair Reflects periods of rest or tasks performed
while seated

A4 Moving Walking around Indicates general mobility, transitioning
tasks or locations

A5 Relocating Putting parts in a box/on
table

Represents tasks involving object
manipulation or repositioning

A6
Grabbing with one

hand
Grabbing a component in
either right or left hand

Simulates handling of smaller or
lightweight components, such as screws,

bolts, or small tools, and allows for
simultaneous engagement in another task,

such as operating a machine control.

A7
Grabbing with two

hands
Grabbing a component with

both hands

Represents handling of larger/heavier items
that require secure grip and better control,

such as larger assembled products, ensuring
safety and minimizing risk of mishandling.

3.2. Data Processing

Data preprocessing follows the data acquisition phase. This step applies a series
of steps on the combined observations, including data segmentation to break down the
streams of time series, cleaning to remove any anomalies or inconsistencies, imputation to
manage missing data, normalize the data, and reinforce the time series structure of the data.
This preprocessing was crucial in preparing the data for accurate and reliable analysis in
the later stages of the study. Additional steps such as padding, conversion, and one-hot
encoding are performed to structure the data for the proposed deep neural networks.

Data segmentation via Change Point Analysis (CPA): CPA is a statistical technique
employed to identify significant points or intervals in a time series where there is a notable
change or shift in the underlying characteristics or behavior of the data. It is a valuable tool
for detecting and understanding changes in trends, patterns, or distributions within a time
series or any ordered sequence of data [51]. The primary objective of change point analysis
is to pinpoint the locations of these changes and quantify their magnitude, timing, and
potentially their causes. In the context of intention recognition in manufacturing, workers
or employees typically perform sequences of actions one after another. Hence, it becomes
essential to identify when activity changes occur to make more accurate predictions contin-
ually. To address this aspect, each of the observations collected during the data collection
process comprises human movement data representing a sequence of activities rather than
a single activity. The collected observations are subsequently broken down into single
activities based on the results obtained from the change point analysis method.

To identify significant changes in the time series data and segment the observations
accordingly, the Pelt algorithm is employed in conjunction with a Gaussian radial basis
function (RBF) model [52]. The Pelt algorithm optimizes a cost function to efficiently detect
change points, making it well-suited for handling large datasets and providing accurate out-
comes. The cost function used in the Pelt algorithm is typically based on a specific statistical
criterion, such as the sum of squared residuals, sum of absolute residuals, or Bayesian In-
formation Criterion (BIC). The cost function evaluates the fit of each segment and penalizes
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the introduction of additional change points. The optimal change points are determined
by finding the points that minimize the cumulative cost over all possible segmentations.
Denoting the time series data as X = {x 1, x2, . . . , xT}, where xt represents the data point at
time index t, and T is the total number of time steps. The goal of the Pelt algorithm is to par-
tition this time series into segments

{
(x1, . . . , xτ1),

(
xτ1+1, . . . , xτ2

)
, . . . ,

(
xτk−1+1, . . . , xT

)}
,

where τk is the change points. In conjunction with the Pelt algorithm, the Gaussian radial
basis function, (1), is utilized.

f (x) = ∑N
i=1 wi.exp

(
(x − ci)

2

2σ2

)
, (1)

where f (x) represents the function’s output, x is the input, N is the total number of radial
basis functions, wi represents the weight associated with each basis function, ci is the center
of the ith basis function, and σ is a parameter that controls the spread or width of the
basic functions.

Data Cleaning: Following the collection of segments, the data undergoes several
processing stages. The initial step is to apply a threshold of 30%, determining whether to
retain or discard specific observations. This threshold is selected to maintain a high level of
data quality.

Data Imputation: For the observations that pass the 30% threshold, imputation
is employed using the Iterative Imputer method to fill in any missing data [53]. This
imputation method models each feature with missing values as a function of other features
and iteratively refines these estimates until a stable solution is reached. Subsequently,
normalization is applied to standardize the data’s scale, improving the model’s ability to
accurately interpret and learn from the data. Finally, the processed data is transformed into
a time series format, providing a sequential structure essential for our analysis.

Data Padding: Given the uneven length of time series segments, padding is imple-
mented to standardize data dimensions. Padding extends sequences with zeros until all
match the length of the longest sequence.

Conversion to 3D Tensor: The standardized observations are transformed into a
3D tensor, shaped (3500, 126, 665). This tensor accounts for the number of observations,
timestamps, and features, respectively.

One-Hot Encoding of Targets: For the final preprocessing step, the target labels are
encoded using one-hot encoding. With seven activity classes, each class was represented as
a binary vector in our dataset.

3.3. Model Training and Evaluation

Given the spatiotemporal structure of our dataset, CNN, CNN-LSTM, and CNN-
Transformer are selected for their respective strengths and capabilities in managing complex
spatial and temporal data structures. CNNs are well suited for extracting local spatial
patterns and features from input data, making them effective for recognizing fine-grained
motion and gesture details. LSTM networks are designed to model temporal sequences
and are particularly useful for capturing the dynamic evolution of human actions over
time, which is critical for understanding intentions in HRI. To further enhance the model’s
capacity to capture long-range dependencies and contextual information, we incorporated
a CNN-Transformer architecture that combines the local feature extraction capabilities of
CNNs with the global attention mechanism of Transformers. This hybrid approach enables
the model to better integrate both short- and long-term temporal relationships, improving
its ability to recognize complex and subtle human intentions in interactive scenarios.
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3.3.1. CNN

The CNN model, renowned for its robustness and efficacy in handling multi-
dimensional input, is used to extract local feature representations from the time series
data. Its unique strength lies in recognizing spatial dependencies in the local frame, which
makes it a viable choice for this study. CNNs have become the architecture of choice for
a wide range of image processing and computer vision tasks due to their ability to learn
hierarchical representations of input data. Originating from the field of deep learning,
CNNs have been successfully employed in numerous applications such as image and video
recognition, recommender systems, image generation, medical image analysis, and natural
language processing, among others. Convolutional layers form the basic building block of
a CNN and consist of a set of learnable filters (or kernels), which have a small receptive
field but extend through the full depth of the input volume. As the filters slide over the
input data, they perform a dot product operation, creating a feature map that represents
the presence of specific features in the input. Given an input matrix I and a filter F, the
convolution is defined as presented in (2), where * denotes the convolution operation. The
resulting matrix is often called a feature map.

(I ∗ F)(i, j) = ∑ m ∑ n I(m, n)F(i − m, j − n) (2)

After each convolution operation, the feature maps are passed through a non-linear
activation function, such as a Rectified Linear Unit (ReLU). This function (3) introduces
non-linearity to the network, allowing it to learn more complex patterns.

ReLU(x) = max(0, x) (3)

Following one or more convolutional layers, pooling layers are used to reduce the
spatial size of the representation, both to decrease the computational load and to help the
model generalize better. The most common form of pooling is max pooling, where the
maximum value is chosen from each cluster of neurons at the prior layer. Near the end of
the network, fully connected layers are used to perform high-level reasoning. Neurons in a
fully connected layer have connections to all activations in the previous layer, as seen in
regular neural networks. Their purpose is to use these learned features to classify the input
image. In a fully connected layer, the weights can be represented as a matrix W, and the
biases as a vector b. Given input vector x, the output y of the fully connected layer is as
displayed in (4).

y = Wx + b (4)

The final layer in a CNN is typically a softmax or a sigmoid activation function for
multi-class or binary classification tasks, respectively. These functions convert the output
into a probability distribution over classes, providing a definitive prediction. The softmax
function transforms an input vector z into a probability distribution over C classes as
displayed in (5).

Softmax(z)i =
exp(zi)

∑C
j−1 exp(zi)

, For i = 1, . . . , C. (5)

Through this structure, CNNs can leverage the spatial and temporal dependencies
in input data through the application of relevant filters, providing an automatic, adap-
tive approach to feature extraction, thus enabling a more effective and efficient form of
intention recognition.
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3.3.2. Long Short-Term Memory Networks (LSTMs)

LSTMs are a type of recurrent neural network (RNN) architecture, explicitly designed
to overcome the vanishing gradient problem associated with traditional RNNs. LSTMs
are exceptionally suited for classifying, processing, and making predictions based on time
series data, given their capacity for learning long-term dependencies. They have been
widely used in a variety of applications, including speech recognition, language modeling,
translation, and gesture recognition. The primary components of an LSTM unit are the cell
state and three types of gates, namely the forget (6), input (7) and (8), and output (10) and
(11), Given an input vector xt at time t, the previous hidden state ht−1, and the previous
cell state ct−1 (9), the LSTM unit updates using sigmoid (σ) and tanh functions.

ft = σ
(

w f .[ht−1, xt] + b f

)
(6)

it = σ(wi.[ht−1, xt] + bi) (7)

ct = tanh(wc.[ht−1, xt] + bc) (8)

ct = ft × ct−1 + it × ct (9)

ot = σ(Wo.[ht−1, xt] + bo) (10)

ht = ot × tanh(ct) (11)

where the forget gate ( ft), (6), determines which information from the cell state should
be thrown away or kept. w f and b f are the weights and bias associated with the forget
gate. The input gate updates the cell state with new information. It decides which values
will be updated and creates a vector of new candidate values that could be added to the
state. (7) uses sigmoid to decide which values should be updated in the cell state, while (8)
uses tanh function to create a vector of new candidate values. wi and bi are the weights
and bias associated with the forget gate. The cell state (9) runs along the entire chain of
LSTM. It carries information from earlier time steps to later ones and can be updated or
modified by the gates to forget certain values as dictated by the forget gate and adds new
values as proposed by the input gate. Finally, the output gate decides what the next hidden
state should be as displayed in (10). This hidden state, ht, will be used in predictions at
this time step, and will be transferred to the next LSTM unit as displayed in (11). Through
this structure, LSTMs can handle long-term dependency problems. They can remember
or forget information over a long period of time, making them highly effective for activity
recognition tasks, particularly when the activities are of varying lengths or when the
recognition system needs to account for temporal dependencies in the data.

3.3.3. Transformer

Transformers have emerged as dominant players in the machine learning arena, no-
tably for sequence-related tasks. Originating in natural language processing, their ap-
plicability has now expanded across various domains, including intention and activity
recognition. At the heart of the Transformer’s prowess is its ability to parallelize sequence
data processing. Unlike RNNs, which inherently work sequentially, Transformers process
all data points of a sequence simultaneously. This parallel processing attribute, coupled
with the model’s innate capacity to determine the importance of different parts of a se-
quence, offers a significant computational advantage. The crux of a Transformer model is its
attention mechanism, which assigns weights to different parts of the sequence depending
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on their relevance. Given a sequence with data points represented as key (K), value (V),
and query (Q) pairs, this mechanism can be broken down as displayed in (12):

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
× V (12)

Here, dk is the dimensionality of the key vectors. The result of this computation gives
a weighted sum of values, where the weight assigned to each value depends on the query
and key. Self-attention is a specialized form of attention mechanism where the model
assigns weights by comparing each data point in a sequence to every other data point
as shown in (13). This enables the model to evaluate dependencies without considering
sequence order.

Self − Attention(X) = Attention(X, X, X) (13)

Typically, a Transformer model contains an encoder that interprets the input data and
a decoder that formulates the output. Each of these is made up of numerous identical
layers, incorporating self-attention and feed-forward networks. In the context of intention
recognition, the Transformer’s capability to concurrently process all activity data offers an
encompassing perspective of the entire sequence. Hence, when integrated with CNNs as
a CNN-Transformer, the resultant model leverages the spatial feature extraction strength
of CNNs with the sequence processing expertise of Transformers. This synergy allows for
superior attention to crucial parts of the sequence, bolstering our expectations of exceptional
performance in this work.

We train our models on the preprocessed data, tweaking parameters based on the
performance on a validation set. The performance of the algorithms was then assessed
using metrics such as precision, recall, F1-score, and support. Precision is the ability of the
classifier not to label as positive a sample that is negative, whereas recall (or sensitivity)
is the ability of the classifier to find all the positive samples. The F1-Score is a weighted
harmonic mean of precision and recall such that the best score is 1.0 and the worst is 0.0.
Support is the number of actual occurrences of the class in the specified dataset. Precision,
recall, and F1-score are metrics that evaluate the quality of the model’s predictions, while
support is the number of occurrences of each class in the dataset.

4. Experimental Setup
We enlisted the participation of a diverse group of six individuals, aged 19 to 39,

including two females and four males to perform seven activities: ‘Standing’, ‘Sitting’,
‘Bending’, ‘Walking’, ‘Pick up one hand’, ‘Pick up two hands’, and ‘Relocate’. The procedure
for data collection began with a brief introduction, acquainting participants with the
HTC-Vive system and Leap Motion and outlining the process and their role in it. Each
observation included human movement data for performing a sequence of activities. The
features collected over each observation include the position (x, y, z), rotation (x, y, z),
velocity (x, y, z), and angular velocity (x, y, z) of each HTC-Vive tracker and head-mounted
display (HMD), in addition to the HMD’s forward vector, which is a normalized 3D vector
(x, y, z) representing the direction of the headset’s gaze. Furthermore, the coordinates of
palm position and velocity; vectors for the palm normal and direction to the fingers; and
lists of the attached fingers as demonstrated in Figure 5.
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Figure 5. Data sources and corresponding features used in the system. (a) HTC Vive Pro headset
providing head orientation and movement data; (b) HTC Vive Tracker capturing body or object
motion with positional and rotational data; (c) Leap Motion sensor providing detailed hand and
finger tracking, including joint positions and orientations for the thumb, index, middle, ring, and
pinky fingers.

The HTC system is an “outside-in” tracking system that uses room-scale technol-
ogy [47]. The utilized HTC Vive system uses external sensors, known as base stations, to
track the position of the headset and trackers in a room. These base stations are placed
in fixed positions around the coverage area (10 by 10 m2) and emit infrared signals. The
sensors on the headset and sensors detect these signals, allowing the system to precisely
calculate their positions in 3D space [47]. Leap Motion is a motion-tracking technology
designed to capture and interpret hand and finger movements with high precision, enabling
users to interact with digital environments in a natural, touch-free manner [48]. The Leap
Motion Controller is equipped with infrared cameras and LEDs that track the position and
movement of a user’s hands and fingers in 3D space within a close range [48]. This data
is processed to allow users to manipulate objects, control applications, or navigate virtual
environments through gestures alone.

After detecting the change points using the Pelt algorithm, we proceeded to segment
the time series into distinct parts based on the identified changes. Each resulting segment
represented a single-activity observation, and each segment was saved as a separate file.
This process generated a total of 4400 single-activity observations, including 1200 instances
of standing idle, 1000 instances of walking, 600 instances of pickup with one hand, and
400 instances of sitting, bending, pickup with both hands, and placing, each. Each of these
single-activity observations was represented as a matrix with a shape of (X, 676), where
‘X’ denotes the number of timestamps collected during the observation, and 665 signifies
the number of features captured in the data. To ensure uniformity, the observations were
padded to achieve a consistent shape. By combining all the observations, we created
a tensor shape (4400, 126, 676), allowing us to efficiently work with the data using the
prediction models. Upon discarding data with missing values exceeding 30 percent for any
given feature, a dataset of size 153,385,200 data points is amassed. This dataset translates
into 3500 observations, each encapsulating 676 features with varying time stamps, ranging
from 13 to 126, which are processed by going through various steps explained in the data
processing section such as segmentation, cleaning, imputation, padding, data conversion,
and one-hot encoding.
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5. Results and Discussion
Following preprocessing, the observations are divided into training and validation

sets using an 80/20 split, and the performance of our classification algorithms are evaluated
using metrics like accuracy, precision, recall, and F-1 score. As illustrated in Figure 6, the
CNN model boasts an overall precision, recall, and F-1 score of 0.95, indicating a high level
of performance. It is important, however, to recognize the model’s variance in performance
across classes. Specifically, while it excelled in predicting both ‘pick up’ activities, its
performance was slightly lower for ‘walking’ and ‘standing’ activities, with precision and
recall scores of 0.95 and 0.86, and 0.82 and 0.93, respectively.
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across activities.

Figure 6 also displays the performance of the ensemble CNN-LSTM network on each
class. It can be observed that the model performed well in all categories, with precision,
recall, and F1-score all above 0.97 for all classes. The model’s overall accuracy on the test
dataset stands at 0.99. However, it is noteworthy that the ‘standing’ category exhibits
a slightly lower recall compared to the rest, indicating a few ‘standing’ instances are
misclassified into other categories.

As outlined in Figure 7, the ensemble CNN-Transformer model displays exemplary
performance, achieving an overall accuracy close to 1.00. Across all classes, the model
exhibits high precision, recall, and F1-scores. Specific class metrics are as follows. ‘Pick up
one hand’ and ‘pick up two hands’ have precision, recall, and F1-scores of 1.00. ‘Relocate’
and ‘bending’ achieve near-perfect performance with precision of 0.99 and 1.00, recall of
1.00 and 0.99, and F1-scores of 0.99 for both. ‘Sitting’ and ‘standing’ also achieve a scores of
1.00 across all measures. ‘Walking’ is close to perfect, with precision and F1-scores of 1.00,
and a slightly lower recall of 0.99.

Given the performance of our models, it is evident that the CNN-Transformer model
has surpassed the capabilities of both the CNN and the CNN-LSTM models (see Figure 7).
The CNN-LSTM model encountered difficulties in distinguishing the ‘standing’ activity,
a task that required accurate classification amidst the complexity of human postures and
movements. Similarly, the standalone CNN model displayed some weaknesses, specifically
with the ‘walking’ and ‘standing’ activities, where it yielded lower precision and recall. This
implies that the model was less accurate and had more false positives and false negatives,
indicating potential issues with inability to capture the complexities of human gait.
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(c) Relocating; (d) Bending; (e) Sitting; (f) Idle (Standing); (g) Walking.

Contrary to these struggles, the CNN-Transformer model stands out with its perfor-
mance. Demonstrating near-perfect precision and recall across all activity classes, this
model has shown marked improvement. It suggests that the Transformer architecture,
renowned for its capability to handle temporal dependencies and its attention mechanism,
has effectively enhanced the model’s ability to capture the intricate patterns of human
activities. Its performance is a clear indicator of significant advancements in its capac-
ity to correctly identify, classify, and predict all activities. This progression signifies not
just model enhancement but also strides towards the goal of robust and reliable human
intention recognition.

Figure 8 presents the training and validation accuracy and loss curves over epochs for
the CNN-Transformer model. The model exhibits rapid convergence, with both training
and validation accuracy increasing steadily while the loss decreases, indicating effective
learning. The close alignment between training and validation curves suggests that the
model generalizes well without significant overfitting.
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5.1. Sensitivity Analysis

As early intention recognition—the ability to recognize intentions before the comple-
tion of the corresponding movement—is gaining more popularity, the proposed intention
recognition framework is tested against incomplete observations for all trained models.
The incomplete observations are produced by truncating data at successive one-second
intervals, assessing model accuracy using the F1-score as displayed in Figure 9.

Machines 2025, 13, x FOR PEER REVIEW 14 of 20 
 

 

model has shown marked improvement. It suggests that the Transformer architecture, 
renowned for its capability to handle temporal dependencies and its attention mechanism, 
has effectively enhanced the model’s ability to capture the intricate patterns of human 
activities. Its performance is a clear indicator of significant advancements in its capacity 
to correctly identify, classify, and predict all activities. This progression signifies not just 
model enhancement but also strides towards the goal of robust and reliable human inten-
tion recognition. 

Figure 8 presents the training and validation accuracy and loss curves over epochs 
for the CNN-Transformer model. The model exhibits rapid convergence, with both train-
ing and validation accuracy increasing steadily while the loss decreases, indicating effec-
tive learning. The close alignment between training and validation curves suggests that 
the model generalizes well without significant overfitting. 

 

Figure 8. Loss (a) and accuracy (b) of the winning model (CNN-Transformer model) over epochs. 

5.1. Sensitivity Analysis 

As early intention recognition—the ability to recognize intentions before the comple-
tion of the corresponding movement—is gaining more popularity, the proposed intention 
recognition framework is tested against incomplete observations for all trained models. 
The incomplete observations are produced by truncating data at successive one-second 
intervals, assessing model accuracy using the F1-score as displayed in Figure 9. 

 
Figure 9. Performance of all trained models across different prediction horizons.

In Figure 9, the ‘full data’ condition represents the framework having unrestricted
access to the continuous sensory data stream and autonomously performing segmenta-
tion using change point detection. Importantly, this does not mean the model uses long
fixed time windows (e.g., ~10 s) for training or inference. Rather, the effective prediction
horizon can be as short as one second, with the remaining sequence padded as needed.
This flexibility allows the system to optimize segmentation and achieve the best perfor-
mance. Figure 9 illustrates the performance of three different neural network architectures,
CNN-Transformer, CNN-LSTM, and CNN, over varying prediction horizons. As seen
in Figure 9, the CNN-Transformer consistently outperformed the others across all time
intervals, especially as the prediction time decreases. All models’ performances improve
over longer prediction time, which is typical as more information provides better context
and feature recognition for predictions. The CNN-Transformer outperforms the other
models, suggesting that its architecture is most effective for the tasks involving both spatial
and temporal data analysis. CNN-LSTM falls in the middle, offering a balance between
temporal dynamics processing and feature extraction, while the CNN lacks the capabilities
to excel on its own in tasks requiring understanding of temporal dynamics.

5.2. Comparison with Prior Work and State of the Art

Prior research on intention recognition in HRI has involved instances of using wear-
able technology (e.g., IMUs), video-based tracking, and physiological signals in real-world
yet safe setup environments [34,36,38]. While these studies have provided valuable insights,
they are often limited due to environmental noise, occlusion, and hardware constraints. No-
tably, the use of VR as a platform for intention recognition remains underexplored, and our
study is among the first to leverage VR to collect large-scale, high-resolution, multimodal
data on human activities in manufacturing-like settings. For example, [36] used proba-
bilistic state machines for intention recognition in human–robot collaboration, while [38]
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applied wrist-worn IMUs for behavior modeling in industrial assembly lines. More re-
cently, [34] employed EEG signals to detect upper-limb movement intentions in advance,
and [44] combined human–object interaction models with graph convolutional networks
for assembly intention recognition. Although these approaches have demonstrated success,
they often face challenges in generalizability, data sparsity, and real-time performance.

Our work advances the state of the art by introducing VR as a controlled and flexible
experimental platform for studying intention recognition in human–robot interaction.
This setup enables the simulation of diverse manufacturing tasks and the generation of
large, temporally rich datasets with minimal environmental interference, ensuring high
consistency and repeatability across experiments. Compared to prior sensor-based and
vision-based systems, the VR-based approach provides precise control over task conditions
and environmental variability, improving the consistency of model training and evaluation.

Importantly, while previous studies have applied deep learning methods such as
LSTM networks and multimodal fusion models to intention recognition tasks [30], our
study introduces a novel CNN-Transformer hybrid architecture that leverages both spatial
and temporal dependencies, achieving superior performance in offline intention recognition.
We explicitly frame our contribution as a feasibility and baseline study designed to explore
the technical potential of integrating VR testbeds with advanced neural architectures, rather
than presenting a fully deployable real-time system. While we recognize the limitations of
our participant pool, which we explicitly acknowledge in the manuscript, we demonstrate
the potential of combining dense, high-quality temporal data with innovative modeling
approaches. This positions our work as a complementary and foundational contribution
that bridges the gap between controlled experimental studies and the complex demands
of real-world manufacturing environments, paving the way for future large-scale and
real-time implementations.

5.3. Limitations and Real-World Implementation

While our CNN-Transformer model demonstrated strong precision and recall within
the controlled VR environment, several important considerations and opportunities for
future work remain.

First, although the study involved a modest participant group (n = 6), we collected
a rich and detailed dataset comprising over 1.5 million fine-grained time-stamped data
points from multiple sessions. This provided robust material for training and testing our
models. That said, we recognize that the participant pool’s size limits generalizability
across broader populations, such as those varying in age, body type, or movement styles.
We have transparently acknowledged this limitation and see it as an exciting direction for
future work, where expanding to larger and more diverse participant pools will allow us to
rigorously test the generalizability and scalability of the approach.

Second, while VR offers significant advantages as a controlled, flexible, and replicable
experimental platform, we fully acknowledge that real-world manufacturing environments
bring additional complexities—including unpredictable worker behaviors, occlusions,
varying lighting, and operational disruptions—that were outside the scope of this study.
We view our VR-based findings as an important feasibility step, providing foundational
insights that will support future field deployments.

Third, we note that our framework currently relies on specialized VR hardware
(e.g., HTC Vive, Leap Motion), which, while effective in a research setting, may present
scalability challenges for widespread industrial use. Future extensions of this work will
explore adaptation to industrial-grade sensors and more cost-effective solutions, such as
wearable IMUs or camera-based systems, to enhance practical applicability.
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Additionally, although the system is designed for real-time operation, this study fo-
cused on offline analysis to first establish and benchmark model performance. Moving
forward, integrating the framework into live human–robot collaborative systems, evalu-
ating real-time latency, and validating closed-loop control performance are essential next
steps that we are eager to pursue.

Finally, while the current framework uses a bottom-up approach—predicting fine-
grained actions (e.g., walking, standing) without requiring explicit high-level goal
modeling—we see exciting opportunities for future work to incorporate hierarchical, top-
down reasoning. Such integration would allow the system to connect low-level actions to
overarching collaborative goals, improving both interpretability and scalability for more
complex multi-agent scenarios.

6. Conclusions
In conclusion, our research proposes an intention recognition framework, while pre-

senting a comprehensive exploration of utilizing neural networks, particularly within a
manufacturing context. With an extensive dataset comprising over 150 million data points
collected using wearable technologies and VR, a robust data preprocessing pipeline that
involved cleaning the data, inputting missing values, padding sequences for consistency,
converting data into a 3D tensor, and performing one-hot encoding on the target labels is
deployed. CNN, CNN-LSTM, and CNN-Transformer models are trained and evaluated
against a range of metrics including accuracy, precision, recall, and the F1-score. Our
findings revealed that while all three models demonstrated high efficacy in intention recog-
nition, the ensemble CNN-Transformer model outperforms in terms of precision, recall,
and overall accuracy. As the CNN-Transformer model demonstrated superior performance
on the original data, our findings open avenues for ongoing research aimed at early inten-
tion recognition tasks. This study brings us one step closer to achieving our goal: robust,
reliable, and comprehensive human intention recognition, thereby paving the way for a
new era of productivity and safety in the industry. Although the framework achieved high
accuracy, its generalizability is constrained by three factors: (i) a small, demographically
limited participant pool, (ii) data collected in a virtual-reality cell rather than on a physical
factory floor, and (iii) evaluation without the robot closed-looped for end-to-end latency
measurement. Future studies will include more diverse operators, real-world data cap-
ture, extending to top-down integration of goal-task hierarchies, and full robot-in-the-loop
validation to address these gaps.
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Abbreviations
The following abbreviations are used in this manuscript:

HRI Human–Robot Interaction
VR Virtual Reality
CNN Convolutional Neural Network
LSTM Long Short-Term Memory
Cobot Collaborative Robot
MFIRA Multimodal Fusion Intent Recognition Algorithm
EEG Electroencephalogram
EMG Electromyography
UCI University of California, Irvine
WSDM Wireless Sensor Data Mining
GAMI Gaze and Motion Information
CPA Change Point Analysis
RBF Radial Basis Function
ReLU Rectified Linear Unit
BIC Bayesian Information Criterion
RNN Recurrent Neural Network
LED Light-emitting Diode
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