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A B S T R A C T   

PM2.5, inhalable particles, with a size of 2.5 micrometers or less, negatively impact the environment as well as 
our health. Monitoring PM2.5 is critical to guard against extreme events by alerting people and initiating actions 
to alleviate PM2.5′s impacts. Developing PM2.5 forecasting frameworks empowers the authorities to predict 
extremely polluted events in advance and gives them time to implement necessary strategies in advance (e.g., 
Action! Days). Understanding the spatiotemporal behavior of PM2.5 and meteorological factors is of significance 
for having accurate predictions. This study utilizes EPA sensor data to quantify the PM2.5 air quality index (AQI) 
and meteorological factors such as temperature over 2015–2019 across Michigan, USA. Here, a spatiotemporal 
deep neural structure is proposed through integrating graph convolutional neural (GCN) and exogenous long 
short-term memory (E-LSTM) networks to incorporate spatial and temporal patterns within PM2.5 AQI and 
meteorological factors for predicting PM2.5 AQI. Results illustrate that not only does our proposed framework 
outperform the traditional approaches such as LSTM and E-LSTM, but also it is robust against the network 
structure of EPA stations. The study’s findings demonstrate that the integration of GCN with E-LSTM significantly 
enhances the accuracy of PM2.5 AQI predictions compared to traditional models. This advancement indicates a 
promising direction for environmental monitoring, offering improved forecasting tools that can aid in timely and 
effective decision-making for air quality management and public health protection.   

1. Introduction 

Atmospheric particulate matter (PM) consists of extremely fine solid 
particles and minuscule liquid droplets that are prevalent in the Earth’s 
atmosphere (Xing et al., 2016). These particles exhibit a diverse range of 
sizes, leading to their classification based on their aerodynamic diam-
eter. PM with diameters of 10, 2.5, and 1 micrometer (μm) are denoted 
as PM10, PM2.5, and PM1, respectively. PM is composed of a mixture of 
components including sea salt, nitrates, organic carbon, sulfate, black 
carbon, ammonium, and dust (Crippa et al., 2019). The health impli-
cations of PM exposure are significant and contingent upon factors such 
as size, composition, source, and solubility. In a notable inverse rela-
tionship, smaller PM particles pose higher health risks. When inhaled, 
these diminutive particles can penetrate deeply into the respiratory 
system and even enter the bloodstream, giving rise to serious health 
concerns. For instance, prolonged exposure to PM2.5 elevates the 

likelihood of developing cardiovascular disorders and lung cancer 
(Crippa et al., 2019). Notably, the United States Environmental Pro-
tection Agency (USEPA) underscores the adverse impact of PM2.5 on the 
natural environment. Given its role as a primary contributor to haze 
pollution, PM2.5 has the potential to inflict harm upon various ecosys-
tems, contingent on its specific chemical composition (Sun et al., 2006). 

The impact of PM2.5 on human health remains a significant concern, 
particularly in urban environments. Across numerous urban areas in the 
United States, there has been a concerning rise in childhood asthma 
cases, with PM2.5 identified as a contributing trigger (Masoud et al., 
2021). Southeast Michigan, in particular, has maintained a vigilant, over 
40-year-long monitoring program for PM levels (Michigan Department 
of Environment, 2021). While Michigan currently adheres to all PM 
regulatory requirements, there have been historical instances of non-
attainment concerning PM2.5 levels in Southeast Michigan (Michigan 
Department of Environment, 2021). For example, Detroit faces unique 
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air quality challenges as it is situated amidst several interstate roads 
related to the US-Canada international crossing, and is impacted by 
emissions from key industrial facilities such as the Marathon oil refinery, 
the US Steel plant, and DTE Energy’s River Rouge Power plant. This has 
resulted in Detroit having the highest rate of preterm births (PTB) 
among major U.S. cities (Cleary et al., 2017). Given the disproportionate 
exposure of residents in Macomb, Wayne, and Oakland counties to 
ambient air pollutants, particularly PM2.5, monitoring the Air Quality 
Index (AQI) for PM2.5 becomes imperative (Schulz et al., 2018). There is 
compelling evidence highlighting that individuals who are Black or 
Hispanic, as well as those with lower to moderate incomes, bear a 
disproportionate burden of air pollution in Michigan (Schulz et al., 
2018). These disparities underscore the urgency of addressing PM2.5 
pollution in a manner that promotes environmental justice and safe-
guards the health of vulnerable populations. 

Despite ongoing efforts in PM2.5 monitoring and prediction, there 
remains a gap in accurately forecasting its spatiotemporal dynamics, 
particularly in urban areas like Detroit with complex pollution sources. 
This paper endeavors to bridge this gap and fulfill the imperative need 
for precise forecasting of PM2.5 concentrations through the development 
of a spatiotemporal forecasting model that leverages Graph Convolu-
tional Networks (GCN) and Exogenous Long Short-Term Memory (E- 
LSTM) networks, designed to capture both the spatial distribution and 
temporal progression of PM2.5 levels, taking into account the impact of 
local meteorological conditions. This work is distinct in its integration of 
these advanced neural network techniques, which have not been 
extensively applied in the realm of air quality forecasting. The driving 
force behind this research is the commitment to equip stakeholders, 
especially local residents, with timely insights into episodes of high air 
pollution. By proactively mitigating excessive air pollution exposure 
through predictive modeling, this study aspires to deliver substantial 
health benefits to the vulnerable population. Given the pivotal role that 
PM2.5 plays in shaping the air quality and public health at both local (e. 
g., Detroit) and regional (e.g., Michigan) levels, it becomes imperative to 
scientifically construct a framework capable of accurately modeling and 
forecasting the spatiotemporal dynamics of PM2.5 mass concentrations 
(Huang et al., 2021). On the other hand, meteorological factors such as 
wind speed, precipitation, relative humidity, and air temperature can 
significantly influence PM2.5 concentrations throughout the year. 
Extensive research underscores the substantial temporal and spatial 
variations in PM2.5 levels, attributable to the movement of air pollutants 
across diverse spatiotemporal scales (Huang et al., 2015). These varia-
tions manifest locally, originating from primary sources, and extend to 
broader scales through secondary reactions and transport mechanisms. 
Temporally, the fluctuations in air pollution are shaped by meteoro-
logical conditions and anthropogenic emissions stemming from human 
activities (Beckerman et al., 2013). Consequently, the development of a 
spatiotemporal approach fosters a deeper comprehension of PM2.5 dy-
namics and facilitating accurate forecasting. The potential outcome of 
this research is a more accurate, real-time prediction model that can 
inform timely public health responses and policy decisions, particularly 
in areas facing disproportionate air pollution impacts. This represents a 
significant advancement in the field of environmental monitoring and 
public health protection. 

This work makes contributions by applying GCN and E-LSTM net-
works to explore the spatiotemporal forecasting of PM2.5 AQI, offering a 
novel solution to tackle the challenges inherent in PM2.5 prediction. 
Furthermore, our approach incorporates meteorological data into the 
model to capture the influence of weather conditions on PM2.5 con-
centrations, thereby enhancing the precision of our forecasts. Ulti-
mately, we will rigorously assess and compare the performance of our 
proposed model against existing methods, providing compelling evi-
dence of its efficacy in predicting PM2.5 AQI. 

The remainder of this paper is structured as follows. The literature 
review provides an overview of previous research pertaining to PM2.5 
forecasting and spatiotemporal modeling. The methodology section 

elucidates our approach to data acquisition and preprocessing, as well as 
the development of our forecasting model utilizing GCN and E-LSTM 
networks. The results and discussion section comprehensively presents 
our findings and conducts an in-depth evaluation of the model’s per-
formance. Finally, the conclusion succinctly summarizes the key con-
tributions of this work, outlines its implications, and points towards 
future research directions. 

2. Literature review 

In recent years, various domains, including healthcare (Etu et al., 
2022), agro-industry (Masoud et al., 2019), and manufacturing 
(Chowdhury et al., 2021), have widely embraced machine learning and 
deep learning methods. Researchers have harnessed these techniques to 
explore the connection between PM2.5 levels and meteorological factors, 
as well as to predict PM2.5 concentrations and their corresponding Air 
Quality Index (AQI) worldwide (Wang et al., 2021). To create a pre-
dictive model for PM2.5 levels using meteorological variables as inputs, 
Wang et al. (2021) recommended employing the backpropagation arti-
ficial neural network (ANN). The authors compared the projected PM2.5 
values with actual measurements derived from PM2.5 concentration 
Aerosol Optical Depth (AOD) data collected from 2016 to 2017 in the 
Fulling district of Chongqing. Their findings revealed a significant 
negative correlation between wind speed and PM2.5 concentration, a 
meaningful positive association with relative humidity, and a segmented 
linear relationship with temperature, attributed to diffusion and con-
version rates. Surprisingly, the authors reported no clear linear associ-
ation with precipitation, despite its known purifying effect on PM2.5. 

For the prediction of daily PM2.5 concentrations, Zhu et al. (2018) 
proposed an approach that combined various techniques, including 
Complementary Ensemble Empirical Mode Decomposition (CEEMD), 
Support Vector Regression (SVR), Gravitational Search Algorithm 
(PSOGSA), Particle Swarm Optimization, Generalized Regression Neural 
Network (GRNN), and Grey Correlation Analysis (GCA). They tested the 
viability of this model in three Chinese cities, Jinan, Harbin, and 
Chongqing, each with distinct climatic, terrain, and pollution-source 
characteristics. The results suggested that their proposed approach 
could be effectively employed for air quality prediction and notifica-
tions. In the realm of image-based air quality analysis, Chakma et al. 
(2017) focused on estimating PM2.5 concentrations. Their approach 
involved utilizing a deep Convolutional Neural Network (CNN) to 
categorize natural images based on their PM2.5 levels. They curated a 
dataset comprising 591 photos from Beijing, each accompanied by PM2.5 
values. The model they proposed proved valid for calculating image 
based PM2.5 concentrations. 

PM2.5 prediction can be categorized into temporal, spatial, and 
spatiotemporal analyses, with various methods and approaches 
contributing to our understanding and ability to forecast PM2.5 
concentrations. 

2.1. Temporal analysis 

Temporal literature primarily relies on time-dependent information 
as predictor variables to construct time series forecasting models. For 
instance, the Multi-Directional Temporal Convolutional Artificial Neural 
Network (MTCAN) model formulated by Samal et al. (2021), adeptly 
conducted feature learning and sequential modeling on an extensive 
historical timeseries dataset for forecasting PM2.5 pollution levels over 
extended periods (Samal et al., 2021). To evaluate their proposed model, 
the authors conducted performance tests using two authentic datasets: 
the Multi-Site Air-Quality Dataset from the UCI Machine Learning Re-
pository and the data provided by the Central Pollution Control Board in 
India (Samal et al., 2021). Based on their findings, it was evident that 
their proposed model surpassed CNN (Samal et al., 2021). Masoud et al. 
(2021) employed PurpleAir sensors to measure PM2.5 levels and various 
methodological variables, including humidity. Their investigation 
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centered on a temporal analysis of PM2.5 dispersion across distinct re-
gions within the Greater Detroit Area, utilizing algorithms such as Dy-
namic Time Warping (DTW) and LSTM. The results highlighted that 
LSTM, when augmented with external variables (namely existing PM2.5 
levels, meteorological characteristics, and atmospheric conditions), 
achieved accurate predictions of PM2.5 quantities (with an average Root 
Mean Square Error of 3.2 g/m3). However, he authors reported no 
robust correlation between PM2.5 levels and the specified meteorological 
factors within the Greater Detroit Area were identified (Masoud et al., 
2021). 

2.2. Spatial analysis 

Spatial literature predominantly concentrates on discerning spatial 
patterns for predicting PM2.5 concentrations. Zhao et al. (2019) con-
ducted a comprehensive assessment of the spatial distribution of PM2.5 
and its alterations between 2015 and 2016 in every prefectural city 
across China, utilizing data from over 1000 monitoring stations. Before 
contrasting the changes between the two years, the authors started by 
examining the spatial distribution of PM2.5 values for both 2015 and 
2016. Subsequently, the authors delved into the relationship between 
socioeconomic variables and shifts in PM2.5 concentrations. Remark-
ably, despite existing significant levels of PM2.5 pollution in many cities, 
their findings revealed that a majority of cities in eastern China expe-
rienced a reduction in PM2.5 concentration. To further explore these 
associations, the authors conducted an multiple linear regression model, 
employing socioeconomic characteristics as explanatory variables and 
changes in PM2.5 concentration as response variables (Zhao et al., 2019). 
Addressing the challenge of varying spatial correlations between pre-
dictor variables, such as weather conditions and Aerosol Optical Depth 
(AOD), with PM2.5 concentrations, Zhan et al. (2017) introduced a 
machine learning approach known as Geographically Weighted 
Gradient Boosting Machine (GW-GBM). This method demonstrated su-
perior performance compared to the conventional GBM model in pre-
dicting daily PM2.5 concentrations, even when confronted with partially 
missing AOD data in China (Zhan et al., 2017). 

2.3. Spatiotemporal analysis 

Spatiotemporal analysis endeavors to integrate available temporal 
and spatial data to enhance PM2.5 concentration predictions. For 
instance, Di et al. (2019) employed an ensemble model combining 
Random Forest, neural networks, and Gradient Boosting algorithms. 
Various predictors, including satellite data, land-use variables, eleva-
tion, meteorological data, reanalysis datasets, and a chemical transport 
model, were harnessed to compute daily PM2.5 levels across the United 
States from 2000 to 2015 at a 1 km x 1 km resolution. Epidemiological 
applications were also made to gauge the health effects of PM2.5 using 
this prediction dataset, which encompassed downscaling and uncer-
tainty predictions. Their model performed satisfactorily up to 60 g/m3. 
Luo et al. (2023) assessed soil erosion in the Three Gorges Reservoir 
area, China. This region had experienced significant soil loss for an 
extended period, leading to the implementation of vegetation restora-
tion projects since 1999. They incorporated different scenarios and 
regional vegetation restoration projects to examine potential changes in 
land use and climate in the future. By considering these factors, the 
study aimed to estimate long-term soil erosion changes in the TGR area, 
contributing to our understanding of how regional policies and 
socio-economic development influence soil erosion in the context of 
climate change. 

Huang et al. (2015) utilized daily and hourly PM2.5 data from the 
Beijing Environmental Protection Bureau to analyze spatiotemporal 
patterns from August 2013 to July 2014 in Beijing. The authors also 
assessed the correlation between PM2.5 and meteorological variables, 
employing various methods such as time-series graphs, Ordinary Kriging 
interpolation, coefficient of divergence, and Spearman correlation 

coefficient. The study explored disparities in PM2.5 concentrations 
related to temporal spatial factors using statistical tests and examined 
connections between weather-related elements and daily PM2.5 using 
the Generalized Additive Mixed Model (GAMM). Their findings revealed 
significant associations between meteorological elements and PM2.5 
concentration. Ma et al. (2022) developed a detailed spatiotemporal 
approach for estimating PM2.5, considering data from multiple sources, 
including PM2.5 and weather data collected hourly between April 1, 
2015, and August 31, 2019 and Landsat 8 Operational Land Imager 
multispectral images. Their random forest (RF) approach achieved high 
spatiotemporal resolution and excellent accuracy, with a cross-validated 
R2 of 0.86. 

Shogrkhodaei et al. (2021) used stochastic gradient descent, fre-
quency ratio, and AdaBoost to prepare PM2.5 risk mapping and spatio-
temporal models in Tehran, Iran. The frequency ratio model 
demonstrated the highest modeling accuracy, especially in autumn and 
winter. Thongthammachart et al. (2021) developed a land use regres-
sion model combining the frequency ratio technique and the Community 
Multiscale Air Quality (CMAQ) modeling system to predict PM2.5 levels 
in the Kansai area of Japan. Their model incorporating CMAQ variables 
outperformed the model without CMAQ data. 

Bi et al. (2022) used multiscale geographically weighted regression 
to analyze the relationship between urban green space morphology 
(UGSM) and PM2.5 at different scales in Wuhan. The authors reported 
that UGSMs significantly influenced PM2.5, with the point-line-polygon 
UGSM having the most effective reduction in forecast errors. 

Song et al. (2022) analyzed the spatial and temporal dispersion 
trends and potential risks associated with exposure to ground-level 
PM2.5 data for China from 2001 to 2020. They noted substantial re-
ductions in PM2.5 concentrations in urban agglomerations between 2014 
and 2020. Chen et al. (2021) introduced a convolutional recursive 
neural network to generate PM2.5 prediction maps from real-time air 
quality data in Taiwan. Zhu et al. (2021) used Weibo data to extract 
PM2.5-related health information and employed GWR models to clarify 
the relationship between PM2.5 and related parameters. Tan et al. (2022) 
addressed data gaps in PM2.5 time series data using a two-step hybrid 
model called ST-SILM, which combined spatiotemporal modeling with 
single exponential smoothing and inverse distance weighting. Their 
approach improved estimation accuracy compared to the original 
dataset. 

Zhang et al. (2021) developed a Spatiotemporal Causal CNN 
(ST-CausalConvNet) for short-term PM2.5 forecasting. They used 
spatiotemporal correlation analysis to select relevant data from moni-
toring stations, achieving consistent trends between expected and 
observed PM2.5 concentrations. Pak et al. (2020) proposed a spatio-
temporal model, combining CNN and LSTM networks, for daily PM2.5 
forecasting in Beijing City. Their approach outperformed other models 
in terms of stability and prediction performance. Qi et al. (2019) used 
GCN and LSTM to analyze spatiotemporal changes in PM2.5 concentra-
tions in China based on data from 76 stations. Jiang et al. (2023) esti-
mated CO2 emissions using remote sensing night-time light data and 
observed a reduction in the combined "CO2- PM2.5″ effect. The authors 
identified spatial variations in influencing factors and highlighted the 
synergy between pollution and carbon reduction through clean energy 
development. 

Rahman and Kabir (2023) analyzed the spatial and temporal distri-
bution of air quality indicators in the greater Dhaka region, forecasting 
weekly Air Quality Index (AQI) values and evaluating a particulate 
matter filtration unit’s effectiveness. Liu et al. (2021) developed a 
multi-data-driven spatiotemporal prediction approach for PM2.5, using a 
combination of methods, including graph convolutional networks, 
LSTM, and Q-learning. Tan et al. (2022) created an Ensemble Graph 
Attention Reinforcement Learning Recursive Network for PM2.5 pre-
diction, outperforming state-of-the-art models. Shi et al. (2023) pro-
posed a Balanced Social LSTM for PM2.5 concentration prediction, taking 
into account the influence of stations with higher concentrations on 
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nearby areas and the correlation between adjacent stations. 
Ades and Pires (2019) assessed spatial and temporal patterns of 

PM2.5 levels in Europe, using threshold models and ANN fine-tuned with 
Genetic Algorithms (GA). Gokul et al. (2023) predicted PM2.5 levels in 
Hyderabad using various machine learning models, with LSTM out-
performing traditional machine learning models. Cheng et al. (2023) 
evaluated Convolutional LSTM and Deep Convolutional Generative 
Adversarial Network models for spatiotemporal predictions of ozone 
concentrations in the Beijing-Tianjin-Hebei region from 2013 to 2018, 
finding machine learning-based models superior in spatiotemporal 
performance. 

3. Methodology 

Our proposed framework comprises three core phases: data acqui-
sition, processing, and analysis, as depicted in Fig. 1. In the data 
acquisition phase, we gather PM2.5 Air Quality Index (AQI) and mete-
orological data, including parameters like relative humidity and pres-
sure. These data span the years 2015 to 2019, encompassing the State of 
Michigan. To ensure the integrity of our analysis, we intentionally 
exclude data from 2020 to 2021 due to potential anomalies stemming 
from the COVID-19 pandemic. Our data sources include information 
from the EPA website (United States Environmental Protection Agency, 
2022) and an online open weather database (Weather Underground, 
2022). 

As illustrated in Fig. 1, the initial stage of the data processing phase 
involves imputation. Here, we address missing values through iterative 
imputing, which proves highly effective in multi-variant environments. 
In this method, each feature is modeled as a function of the remaining 
features, enabling us to reasonably estimate missing values based on the 
known feature values (Sadhu et al., 2020). To ensure the robustness of 
predictive models in handling outliers, we employ the winsorization 
method. Winsorization transforms data by capping extreme values 
(outliers) rather than discarding them, thus preserving valuable infor-
mation (Wilcox, 2005). Subsequently, we proceed with feature engi-
neering, which involves formatting features to align with our specific 
structural requirements. Following this, we conduct correlation analysis 
to reduce data dimensionality. This step focuses on retaining method-
ological features that exhibit significant correlations with PM2.5 AQI. 
Consequently, the feature set is narrowed down to include mean relative 
humidity, pressure, temperature, wind speed, and wind direction. 

In the latter part of our proposed framework, we concentrate on data 
analysis, employing spatiotemporal modeling techniques for PM2.5 AQI 
and meteorological factors. This entails the integration of E-LSTM and 
GCN networks, facilitating comprehensive data analysis and modeling. 

3.1. Exogenous long short-term memory 

An exogenous long short-term memory network is a multivariate 
LSTM that incorporates exogenous variables as predictors. LSTMs are 
modifications of the original recurrent neural networks (RNN), designed 
to analyze time-series data, addressing the vanishing gradient problem 

(Zilly et al., 2017). Fig. 2 illustrates how an LSTM functions based on its 
three main gates (i.e., input, output, and forget). 

Given the structure of LSTM cells (three gates and memories), 
number of weights and biases is around four times of traditional RNNs 
(Ryu et al. 2022). The function of each Gate in LSTM can be described as 
follows (Ma et al., 2021). In the forget gate, it is decided which infor-
mation from the preceding layer should be discarded and/or kept in the 
current state, as shown in (1). 

ft =
(
Wf .[ht− 1, xt] + bf

)
(1) 

The input gate updates the information upon entrance using the 
sigmoid function before deciding which information to store in memory 
cells, as illustrated by (2). 

it = σ(Wi.[ht− 1, xt] + bi) (2) 

The output gate determines the model’s output as well as the pro-
portion of the output of control unit state Ct to be distributed to the 
hidden layer elements of the model (i.e., ht). The sigmoid activation 
function produces the initial output, which is then reduced to a range of 
− 1 to 1 by the tanh function, and then multiplied by the sigmoid output 
to produce the result as defined in (3) and (4). 

Ot = σ(Wo.[ht− 1, xt] + bo) (3)  

ht = ot.tanh(Ct) (4) 

The memory generates new candidate values utilizing the tanh 
function, then updates the memory state by combining the input gate’s 
input information with the current state information. It determines what 
information are saved and what information are communicated to the 
next step so that it can forecast future data using prior data as demon-
strated in (5). 

C̃t = tanh(Wc.[ht− 1, xt] + bc) (5)  

where Wf, Wi, Wc, and Wo are the weights of the forget gate, input gate, 
memory cell, and output gate, respectively. ht− 1 represents the last value 
of the hidden unit, and xt represents the input information at the current 
step. bf, bi, bc, bo are the biases of the forget gate, input gate, memory cell, 
and the output gate, respectively. 

In the case of traditional LSTM models, the multivariate time-series 
dataset is represented as a three-dimensional tensor of shape (N, Q, 1), 
where N is the number of samples, Q is the maximum number of time 
stamps across variables, and 1 indicates that only a single variable is 
processed per time step. 

However, in this study, we employ an Exogenous LSTM (E-LSTM) 
model that incorporates meteorological factors as exogenous variables. 
This extends the dimensionality of the tensor to (N, Q, M), where M 
represents the number of variables processed per time step, including 
the meteorological factors. By incorporating these additional variables, 

Fig. 1. Our proposed framework.  
Fig. 2. A single LSTM cell including forget, input, and output gates (Masoud 
et al. 2019). 
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the E-LSTM model can capture the influence of meteorological condi-
tions on PM2.5 concentrations and enhance the accuracy of the fore-
casting model. 

3.2. Graph convolutional network (GCN) 

As a class of deep learning methods suitable for graphical data, GCNs 
have gained increasing popularity in recent years. GCNs enable deep 
learning models applicable to problems that can be described by graphs. 
Such problems can be found in several domains, including biology, 
natural language processing, medicine, telecommunication, and many 
more (Grattarola & Alippi, 2021). A GCN encodes the whole body 
structure of the problem as a graph (G) consisting of nodes (V) of size n 
and edges (E). By takes advantage of graphs’ relational structure, GCN 
makes better prediction (Haghighat &; Prince, 2021). GCNs, as 
graph-based multi-layer neural networks, operate on embedding vectors 
of nodes based upon the properties of their neighborhoods (Kipf & 
Welling, 2016). A GCN applies two types of operations: message passing 
and graph pooling. The former learns a non-linear transformation of the 
input graphs, and the latter reduces their size. 

Here, X ∈ Rn×m reprecents a matrix of all n nodes and their respective 
features, with m being the feature vectors’ dimension. Each row xv ∈ Rm 

denotes the feature vector for v. An adjacency matrix A can be defined 
with its degree matrix D, where the diagonal elements of A are set to one 
due to A’s self-looping nature. For a one-layer network, L(1), the new k- 
dimensional node feature matrix is computed with (6). 

L(1) = ρ(A∼ XW0) (6)  

where ρ is the activation function, W0 ∈ Rm×k is a weight matrix, and Ã is 
the normalized symmetric adjacency matrix. As GCN can only gather 
information about immediate neighbors per each layer, several GCN 
layers are stacked to gather information about larger neighborhoods as 
defined in (7). 

L(j+1) = ρ
(
A∼L(j)Wj

)
(7)  

where L(0) = X and j represent the layer number (Yao et al., 2019). 
Our proposed model for this study, as demonstrated in Fig. 3, is an 

integration of E-LSTM and GCN. This integrated structure helps to better 
extract both temporal and spatial features of the data. 

While the E-LSTM structure relies on time series data of PM2.5 AQI 
and methodological factors, the GCN mainly relies on the adjacency 
matrix. The two networks process the data in parallel, as displayed in 
Fig. 3. Then, the outputs of the two networks are concatenated. A series 
of dense layers further process the data and provide us with the output. 

4. Results and discussion 

The proposed framework undergoes evaluation using data obtained 
from EPA monitoring sites spread across Michigan. Among the 13 active 
EPA sites within the state, seven presented notable gaps in their data 
records, as indicated by the red markers in Fig. 4. Consequently, our 

analysis centers on the data sourced from the remaining six sites, marked 
in green on Fig. 4. These active monitoring stations are strategically 
located in Ann Arbor, Grand Rapids, Detroit, Lansing, Flint, and Monroe, 
each assigned a numerical code from 1 to 6, respectively. The dataset 
encompasses comprehensive information, including AQI measurements 
and various meteorological parameters such as humidity, pressure, and 
temperature. Data collection spans from January 1st, 2015, through 
December 31st, 2019, for all six of these operative monitoring stations. 

Fig. 4 presents a histogram illustrating PM2.5 AQI (a) and the 
geographical distribution of active EPA stations in Michigan (b). Our 
study focuses on data collected from stations marked in green, while 
those marked in red were excluded due to data incompleteness. The 
dataset utilized in this study exhibits gaps and outliers, necessitating two 
distinct data preprocessing techniques. Firstly, we employ iterative 
imputation to address missing values in the dataset. Secondly, we apply 
Winsorization with a threshold of 0.025 to handle outliers. This 
approach effectively mitigates the influence of outliers on our analysis 
while preserving the overall integrity of the data. 

Fig. 5 provides a visual representation of the daily means for PM2.5 
AQI, temperature (◦C), humidity (%), pressure (x103 pascal), wind di-
rection (◦), and wind speed (km/hr) across all six stations during the 
year 2019. 

As shown in Fig. 5, while PM2.5 AQI, humidity, pressure, wind di-
rection, and wind speed exhibit stationary behavior, temperature stands 
out as the only factor displaying autocorrelation. This observation is 
further substantiated by the Dickey-Fuller test results. Consequently, we 
conducted an autocorrelation analysis to determine the lagged re-
lationships and subsequently employed iterative differencing to remove 
the underlying trend in the temperature data. The next step involved 

Fig. 3. The block diagram of our proposed E-LSTM-GCN.  

Fig. 4. Histogram of the average of PM2.5 AQI (a); EPA active stations in 
Michigan (b). 

Fig. 5. Averaged time series of processed values of PM2.5 AQI, humidity (%), 
pressure (x103 pascal), temperature (◦c), wind direction (◦), and wind speed 
(km/hr). 
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conducting correlation analysis, as illustrated in Fig. 6. Initially, our 
dataset included daily measurements of maximum, mean, and minimum 
values for pressure, humidity, wind speed, and wind direction, along 
with the daily mean temperature. Through the correlation analysis, we 
identified highly correlated features (i.e., those with correlation scores 
close to 1 or -1) and subsequently removed them from the dataset. This 
process helps reduce the feature space to the daily mean values for hu-
midity (in percentage), pressure (in Pascal), temperature (in degrees 
Celsius), wind direction (in degrees), and wind speed (in kilometers per 
hour). By selecting these features, we ensured that the essential mete-
orological information was retained while minimizing the presence of 
redundant variables in our analysis. 

Upon the completion of preprocessing steps, the dataset is parti-
tioned into training (spanning the first 42 months: January 2015 to June 
2018), validation (encompassing nine months: July 2018 to March 
2019), and testing (covering nine months: April 2019 to December 
2019) sets. 

Before initiating model training, we determine the forecasting hori-
zon and the training window by considering various combinations, 
ranging from one to five days of historical data to predict the PM2.5 AQI 
for the next one to five days. After careful evaluation, the optimal 
combination identified was a training window of three days (including 
PM2.5 AQI and meteorological factors) to forecast the PM2.5 AQI for the 
following day. E-LSTM-GCN models are trained for all six locations, and 
hyperparameter tuning is performed using a grid search approach. 

Fig. 7 illustrates the loss curves for both the training (depicted in 
blue) and test (depicted in orange) sets for the developed E-LSTM-GCN 
models. The observed decreases in loss for both training and test sets, as 
shown in Fig. 7, affirm the model’s robust performance across all loca-
tions, resulting in the stabilization of the models’ predictive capabilities. 

To evaluate the performance of the proposed E-LSTM-GCN, the 
model is compared with traditional LSTM and E-LSTM using different 
metrics such as mean squared error (MSE), root mean squared error 
(RMSE), mean absolute error (MAE), and mean absolute percentage 
error (MAPE), where at each location, three sets of models are used, and 
the error is calculated as the difference between the predicted and actual 

values (i.e., LSTM, E-LSTM, and E-LSTM-GCN) are trained using the 
training dataset, and their MSE, MAE, MSE, and MAPE are calculated 
using 5-fold validation as demonstrated in Table 1. Table 1 compares the 
performance of all three models across all locations using the mean and 
standard deviation of MSE, RMSE, MAE, and MAPE. 

Table 1 not only demonstrates the superior performance of our 
proposed E-LSTM-GCN model for reporting lower values of RMSE, MSE, 
MAE, and MAPE, but also it is of robustness compared to the other 
techniques by having the smallest standard deviation in each metric. To 
better understand the impact of the spatial structure of the adjacent 
stations, the performances of all models are evaluated using RMSE 
metric across all locations, as displayed in Fig. 8. 

As displayed in Fig. 8, the proposed model outperforms the LSTM 
and E-LSTM models in each location, portraying its robustness against 
the structure of the adjacency graph. Fig. 8 demonstrates that although 
E_LSTM_GCN best performs when the targeted location is surrounded by 
other locations in all directions (e.g., Location 3, Detroit), it outperforms 
LSTM and E-LSTM even if the graph structure is not ideal (e.g., Location 
6, Monroe). 

5. Conclusion 

Monitoring and predicting the spatiotemporal variability of PM2.5 
mass concentrations is of paramount importance, given its potential 
adverse effects on air quality and public health. The development of 
PM2.5 forecasting frameworks empowers authorities to proactively 
safeguard citizens by providing lead time to implement preventive 
measures during periods of extreme pollution events. An in-depth 
comprehension of the spatiotemporal dynamics of PM2.5 and its intri-
cate relationship with meteorological factors is pivotal for enhancing 

Fig. 6. Correlation analysis for feature selection.  

Fig. 7. The loss of the trained E-LSTM-GCN models over the train and 
test datasets. 

Table 1 
Comparison of the performance (mean ± standard deviation) of the developed 
LSTM, E-LSTM, and E-LSTM_GCN using RMSE, MAE, MSE, and MAPE.   

RMSE MSE MAE MAPE 

LSTM 4.0±0.5 16.3±4.2 3.6±0.4 8.9±1.4 
E-LSTM 3.9±0.4 15.6±3.1 3.5±0.4 8.8±1.7 
E-LSTM-GCN 3.5±0.3 12.5±1.8 3.2±0.2 8.0±1.7  
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forecasting systems. In this study, we harness EPA sensor data to 
quantitatively assess PM2.5 Air Quality Index (AQI) alongside daily mean 
values of humidity, pressure, temperature, wind direction, and wind 
speed spanning the years 2015 to 2019 across Michigan, USA. We 
introduce a novel spatiotemporal deep neural architecture known as E- 
LSTM-GCN, designed to capture both spatial and temporal patterns 
within PM2.5 AQI and meteorological factors for the prediction of PM2.5 
AQI. Our findings demonstrate the superiority of our proposed frame-
work over conventional methods, such as LSTM and E-LSTM, as evi-
denced by an average Root Mean Square Error (RMSE) score of 3.52. 
Importantly, our framework exhibits resilience across diverse station 
networks. Specifically, our proposed model yields PM2.5 AQI predictions 
for Ann Arbor, Grand Rapids, Detroit, Lansing, Flint, and Monroe with 
RMSE scores of 3.51, 3.32, 3.9, 3.25, 3.8, and 3.37, respectively. These 
results underscore the effectiveness and adaptability of our approach in 
PM2.5 forecasting tasks. 

Furthermore, the practical implications of our research are signifi-
cant for urban planners and public health officials, offering a reliable 
tool for air quality management and policy formulation. The predictive 
capabilities of our model can be instrumental in formulating timely 
health advisories, urban planning decisions, and environmental policies. 
For future research, we propose further exploration into integrating 
additional environmental and socio-economic factors into the fore-
casting model to understand their impact on PM2.5 levels. Another 
promising avenue is the application of our model to other regions with 
different climatic conditions and industrial landscapes, to test its 
adaptability and accuracy in varied environmental settings. Lastly, we 
see potential in exploring real-time data integration for dynamic and up- 
to-the-minute PM2.5 forecasting, which could further enhance the utility 
of this model in immediate public health response scenarios. 
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