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Abstract4

The past few years have been witness to an increase in autonomous vehicle (AV) development and5

testing. However, even with a fully developed and comprehensively tested AV technology, AVs6

are anticipated to share the roadway network with human drivers for the unforeseeable future. In7

such a mixed environment, we use naturalistic driving data from the Next Generation Simulation8

(NGSIM) and Lyft Level 5 (Lyft L5) prediction datasets to investigate whether the existence of AVs9

influences the car following behavior of human drivers. We use time headway time series as a proxy10

to capture the car following behaviour of human drivers. We then develop a nested fixed model11

to find possible changes in behaviour when human drivers are following different types of vehicles12
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(i.e., human-driven vehicles or AVs). The factors included in this model are the platoon structure13

(a legacy vehicle following a legacy vehicle, and a legacy vehicle following an autonomous vehicle),14

road type (freeway and urban), time period (morning and afternoon), lane (right, middle, and15

left), and the source of the data (NGSIM and Lyft L5). Results indicate a statistically significant16

difference between the car following behaviour of drivers when they follow a human-driven vehicle17

compared to an AV. This change in the car following behaviour of drivers is manifested in the form18

of a reduction in the mean and variance of time headways when human drivers follow an AV. These19

findings can bridge the gap between anticipated and real-world impacts of AVs on traffic streams20

and roadway stability and capacity, providing meaningful insights on the influence of AVs on the21

driving behavior of humans in a naturalistic driving environment.22

Keywords: Autonomous vehicle-human driver interactions, Car following behaviour23

1 Introduction24

The past few years have been witness to an increase in autonomous vehicle (AV) development25

and testing, with many mobility-oriented companies as well as original equipment manufacturers26

(OEMS) attempting to either open AV divisions or partner with/acquire start-ups that focus on27

software or hardware development for AVs. This move toward a future autonomous transportation28

system is fueled by many anticipated benefits of AVs, such as increased safety and smoother29

traffic flow, which in turn leads to higher levels of fuel economy, less congestion, and curbing30

the environmental footprint of the transportation sector Stern et al. (2018). It might, however,31

take several decades for a fully autonomous transportation system to be deployed. Many experts32

argue that even with a fully developed and comprehensively tested AV technology, there will still33

be individuals who either have a distrust in the technology or do not wish to cease driving for other34

personal reasons. Therefore, it is safe to assume that AVs would have to share the roadway network35

with human drivers for the unforeseeable future.36

Since the advent of personal automobiles traffic engineers have been interested in studying the37

car following behaviour of human drivers, with Bruce Greenshields being credited with the first38

recorded set of experiments to scientifically measure this car following behaviour Greenshields et al.39

(1934). The advent of AVs has given rise to an interesting research question: will the car following40
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behaviour of human drivers be affected when they knowingly follow an autonomous vehicle? Few41

attempts have been made in the literature to answer this question. Rahmati et al. (2019) set up42

two sets of experiments with a platoon of size three, where the third vehicle in the platoon was43

a human-driven vehicle. In the first set of experiments the second vehicle was a human-driven44

vehicle, and in the second set of experiments it was an AV. They recorded the trajectory of the45

third vehicle, and used data-driven and model-based approaches to discern any changes in the46

car following behaviour of the third vehicle in reaction to its proceeding vehicle. They concluded47

that when following an AV, a human driver’s car following behaviour is significantly different than48

following a human-driven vehicle.49

Conducting controlled field experiments allows for assessing the impact of a single factor at50

a time on the car following behaviour of human drivers, while keeping all other factors fixed.51

However, controlled field experiments have a number of downsides. First, a combinatorial number52

of experiments are required to capture the impact of multiple factors changing at once. This53

could easily render comprehensive controlled field experiments impractical, since a wide range of54

environmental factors as well as the presence of other agents (e.g., other AVs or legacy vehicles,55

pedestrians, bicycles, etc.) may play a role in the car following behaviour of drivers. As a result,56

the conclusions obtained from basic and contained field experiments, although insightful, may not57

be readily generalizable to a naturalistic driving environment. As such, in this paper we seek to58

investigate the car following behavior of human drivers who follow an AV in a naturalistic driving59

environment using a naturalistic and large dataset that allows for making statistically significant60

conclusions. To this end, we use the Lyft Level 5 (Lyft L5) Houston et al. (2020) data repository, in61

which a fleet of AVs travels on a fixed route in an urban environment, providing over 1,000 hours of62

AV trajectories, their surrounding agents, and the transportation network. The route encompasses63

a variety of transportation facility types, including intersections and corridors. This dataset is the64

first to enable analysis of the car following behaviour of a heterogeneous set of drivers who follow65

an AV in a naturalistic and dynamically changing driving environment.66

Despite the benefits of using naturalistic driving data in analyzing the changes in the car67

following behaviour of human drivers when following an AV, it also poses a unique set of challenges.68

More specifically, the appearance of an AV is a key factor that can influence a human driver’s car69

following behavior. For the presence of an AV to change the behaviour of human drivers, they70

3



should be able to discern that they are following an AV based on clear visual cues. Garnished by71

lidars and cameras, AVs generally have a distinctive look that human drivers are likely to discern.72

Additionally, a human driver’s car following behaviour depends on their subjective opinion on how73

an AV operates and its risk-taking attitude Zhao et al. (2020). As such, to mitigate the risk of74

unwanted bias in data collection, data should be collected in an extended period of time from a75

diverse set of drivers.76

The car following behaviour of a driver can be reflected using a number of parameters, e.g.,77

velocity, acceleration, and time headway Wang et al. (2014). Here, we use time headway (THW)–78

defined as the time it takes for the following vehicle to reach its leading vehicle–to model car79

following behaviour. As such, we conduct change point analysis on THW of the following driver to80

identify the moment in time when the human driver has identified its leading AV.81

The remainder of the paper is organized as follows. In section 2 we present the existing work82

and list the contributions of this paper. In section 3 we present our analytical approach in detail.83

In section 5 we lay out our analysis using Lyft L5 and NGSIM datasets and present our findings.84

We conclude the paper in section 6.85

2 Literature review86

In traffic modeling, the car-following behavior has been intensively studied to establish how a87

vehicle interacts with its leading vehicle. The main idea is to work with longitudinal dynamics88

of the vehicle pair, such as velocity, acceleration, time headway, and time-to-collision inverse, to89

uncover the behavior patterns of the following vehicle in various driving scenarios. There are two90

main components involved in the study of car-following behavior: modeling and analysis. These91

two components are discussed in the following.92

2.1 Modeling93

As the most commonly encountered driving maneuver in the real world, car following behavior has94

been extensively studied in investigating many specific driving situations. To properly describe the95

interaction between the leading and following vehicles, several measures are proposed. Time-to-96

collision (TTC) reflects human drivers’ perception of their safety for potential collision and it is97

strongly related to longitudinal acceleration/deceleration (Jin et al., 2011). (Vogel, 2003) compares98
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time headway and TTC with real-world traffic data and concludes that time headway and TTC are99

independent but suitable for different usages. They also argue that time headway directly reflects100

potential danger and thus prevents risky TTC, while TTC should be used for actual danger, i.e.,101

on-road obstacle or collision. (Boer, 1999) also mentioned that time headway characterizes the102

safety margin in the situation where the preceding vehicle decelerates while TTC means the time103

left for drivers to intervene to avoid for a crash. Headway is not considered here as it can not include104

velocity-related information which is necessary to learn car following behavior. As we are interested105

in human drivers’ reaction to on-road stimuli (the preceding AV) without evaluating an actual106

collision, time headway works better. Several car-following behavior models are formulated using107

ordinary differential equations (ODE) that take positions and velocities of vehicles as inputs. The108

intelligent driving model (IDM) Treiber et al. (2000) and optimal velocity model (OVM) Sugiyama109

(1999) are two extensively-applied ODE-based models capable of modeling nonlinear dynamics.110

Additionally, a linearized model can be further derived from ODEs via Taylor expansion. The111

full velocity difference model (FVDM) Jiang et al. (2001) was developed based on OVM and the112

generalized force model (GFM) Helbing and Tilch (1998) by taking both positive and negative113

velocity differences into account. It could obtain more precise predictions of vehicle motion in114

traffic jam density. Wiedemann 74 (W-74) model and Wiedemann 99 (W-99) model Durrani et al.115

(2016) are two car-following models developed by Rainer Wiedemann, where the drivers change116

their behaviors at discrete time steps only when certain thresholds (predefined for headway, speed,117

or relative speed) are reached. However, the values of parameters in W-99 are empirical, and no118

literature exists to indicate how ranges for these parameter should be established, which prompted119

many related works Durrani et al. (2016); Mathew and Radhakrishnan (2010); Gallelli et al. (2017)120

in calibrating the W-99 model. Newell’s car-following model Newell (2002) applied a similar concept121

to W-99, assuming that a vehicle will maintain a minimum space and time gap between itself and122

its preceding vehicle. Some studies which pursue a more general way of modeling the car-following123

behavior are discussed in Ro et al. (2017) and Koutsopoulos and Farah (2012), where not only the124

car-following dynamics is considered, but also random human factors and different driving scenarios125

(such as following and emergency braking) were accounted for. Other car-following models such126

as adaptive cruise control (ACC) and cooperative adaptive cruise control (CACC) were designed127

for commercial vehicles, applying automated longitudinal control by adjusting acceleration with a128
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linear function to maintain preset velocity and headway values.129

All of the aforementioned car-following models are based on mathematical formulations with130

longitudinal dynamics, taking advantage of traditional control theory. On the other hand,131

predictive techniques enable a data-driven approach and can directly learn the car-following132

behavior using real-world data. Zhang et al. (2008) utilized time headway and time-to-collision133

inverse data and a back-propagation neural network to reproduce longitudinal accelerations. A long134

short-term memory (LSTM) neural network in Zhang et al. (2019) used the position information of135

surrounding vehicles to predict the car-following behavior with low longitudinal trajectory error. A136

deep deterministic policy gradient reinforcement learning car-following model was developed in Zhu137

et al. (2018), where a mapping from speed, relative speed, and headway to acceleration regime of the138

following vehicle were obtained to deliver a human-like car-following model. A Gaussian mixture139

model (GMM) was developed in Angkititrakul et al. (2011) to anticipate the future car-following140

behavior based on velocity and headway. Such learning-based methods require a large amount of141

training data, and the quality of data significantly influences model performance. Neural network-142

based designs also require careful tuning when learning the longitudinal dynamics of vehicles Da Lio143

et al. (2020).144

From the literature, it can be noticed that multiple longitudinal dynamics impact the car-145

following behaviors of both the following vehicle and the proceeding vehicle, among which relative146

distance and velocity are the two most essential factors. To leverage this finding and reduce the147

complexity of the model, we select time headway as the main feature for modeling car-following148

behavior as it accounts for both relative distance and velocity (Chen et al. (2015) and Vogel (2002)).149

2.2 Analysis150

Car-following behavior is of interest to transportation researchers as it can provide insights into the151

best ways to approach flow throughput control, on-road safety, and energy consumption, etc. There152

are two directions followed in the current literature to analyze car-following behavior of drivers: one153

studies the stability (string stability and plant stability) of traffic flow, while the other quantifies154

the car-following behavior using statistical tools such as mean and variance. As this work focuses155

on patterns of interactions between human-driven vehicles and AVs, the analysis of string stability156

and plant stability is out of the scope this study.157
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Car-following behavior may be affected by many factors such as road condition, weather, and158

vehicle type. When dealing with data relevant to multiple factors, Analysis of Variance (ANOVA)159

is a powerful tool to investigate the influence level of each factor. In Liu et al. (2019), two one-way160

ANOVA tests were conducted, indicating that different speed limits have a significant influence on161

the time headway and headway, and the mean of time headway is closely centered around a fixed162

value. A factorial ANOVA analysis was conducted in Hjelkrem (2015) to determine the interactions163

between area type, number of lanes, and vehicle type influencing the car-following behavior. Road164

condition is suggested to be a critical factor in influencing both headway and time headway by Wang165

et al. (2015) and Houchin (2015). Significant influence from vehicle type (2-door car v.s. 4-door166

vehicles, sedans v.s. trucks, vehicles v.s. motorcycles) is also observed in Evans and Wasielewski167

(1983), Houchin (2015), and Amini et al. (2019).168

The literature on the analysis of car-following behavior mainly focuses on human-driven vehicles,169

and AV-involved scenarios are rarely studied. Human-AV interactions at the microscopic level were170

first studied in Rahmati et al. (2019), where a field experiment was conducted though setting up171

two two-vehicle platoon structures of human-following-human and human-following-AV. Rahmati172

et al. (2019) showed that a shorter headway is selected when human drivers follow an AV. Other173

field experiments conducted by Zhao et al. (2020) suggest that a driver’s subjective attitude toward174

to AV technology dominates the actual AV’s driving behavior in the speed-headway relationship.175

Observations from these two field experiments indicate that the limited data collected from field176

experiments degrades the robustness of the intersection effect(s). Recently, Li et al. (2021) leveraged177

the Lyft L5 dataset as the data source for operational safety analysis in human-AV interactions178

in car-following scenarios. In this study we utilize the Lyft L5 and NGSIM datasets to provide179

a comprehensive and robust evaluation of the car following behaviour of humans, accounting for180

multiple factors that may affect the car-following behaviour of human drivers. This naturalistic181

study serves as a necessary complement to the existing field experiments.182

2.3 Contributions183

The objective of this paper is to provide insights on the potential influence of AVs on the184

car-following behavior of human drivers. The contributions of this paper are two-fold: (i) we185

apply statistical analysis on time headway data from Lyft L5, using NGSIM datasets (US101, I-80,186
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Lankershim Blvd) as the control group, to find the influence of leading AVs on the car-following187

behaviour of following drivers; (ii) This naturalistic study provides evidence that human drivers188

are regulated as a result of introducing AVs, as evidenced by the statistically significant reduction189

in the mean value and variance of their time headways.190

3 Methods191

The objective of this study is to investigate whether, and the extent to which, the existence of192

AVs in the traffic stream influences the car following behaviour of human drivers. To answer this193

question, we propose a comprehensive framework demonstrated in Figure 1. Data used in this study194

is obtained from two public datasets: Lyft L5 Houston et al. (2020) and NGSIM NGS (2021). We195

use time headway time series in our analysis as a proxy to quantify the car-following behaviour of196

vehicles. Time headway between two vehicles is defined as the travel time from the centroid of the197

following vehicle to the centroid of the preceding/leading vehicle based on the following vehicle’s198

speed. In the rest of this paper, we denote a legacy vehicle following an autonomous vehicle as199

LFA, and a legacy vehicle following a legacy vehicle as LFL. We refer to LFA and LFL as platoon200

structures.201

Figure 1: The proposed framework to study the car-following behavior of driversing in LFL and LFA
platoon structures.

As displayed in Figure 1, the proposed framework consists of two main phases, namely, data202

acquisition and data analysis. These phases are described in the following sections.203

3.1 Phase I: Data Acquisition204

The first phase starts by extracting time headways of LFL and LFA platoon structures. More205

precisely, we extract LFA time headways from the Lyft L5 dataset, and LFL time headways from206

both Lyft L5 and NGSIM datasets. Once the time headways are extracted, We use Bayesian change207
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point analysis to filter out the portions of time headway data in the LFA platoon structure where208

the legacy vehicle is not aware of following an AV.209

3.1.1 Change Point Analysis210

Our objective in this study is to make a determination on whether the presence of an AV affects211

the car following behaviour of its following vehicle in the LFA platoon structure. Consequently, we212

first need to identify scenarios in the Lyft L5 dataset where a legacy vehicle is following an AV, and213

more importantly, is aware that it is following an AV. To identify such scenarios, we first identify214

scenes from the Lyft L5 dataset where a legacy vehicle is immediately following an AV. Next, for215

each scene we use change point analysis to mark any changes in the time headway sequence of the216

legacy vehicle, and the velocity sequence of its leading AV Ruggieri and Antonellis (2016). The217

adopted Change point analysis is an online detection approach that provides uncertainty bounds218

on the number and location of change points across observations Ruggieri and Antonellis (2016).219

This method strives to make fast inferences on the occurrence of new change points based on each220

new observation Ruggieri and Antonellis (2016).221

Let us denote by chL the time instance when a change point is detected in the time headway222

time series of the legacy vehicle, and by cvA the time instance when a change point identified in223

the velocity time series of the AV. Let us denote by trmin and trmax the minimum and maximum224

reaction time of the legacy vehicle, i.e., the time period lapsed from the moment the AV changes225

its acceleration and the moment the acceleration of the legacy vehicle changes in response. When226

trmin ≤ chL − cvA ≤ trmax, the change in the time headway of the legacy vehicle can be attributed to227

its car-following behaviour. However, when chL is not proceeded with a cvA within the time interval228

[trmin , trmax], i.e.„ the change point analysis detects a change in time headway of the legacy vehicle229

that cannot be attributed to its car-following behaviour, we postulate that this change can be230

attributed to the legacy vehicle having identified its proceeding vehicle as an AV, and only consider231

the trajectory of the legacy vehicle after this change point. In other instances where no such change232

point is detected, we assume that the legacy vehicle is aware of its leading AV due to the distinctive233

appearance of AVs in the Lyft L5 study.234

In the final step of phase I, the collected and filtered time headways from both Lyft L5 and235

NGSIM datasets are integrated and associated. In this step, each time headway is labeled based236
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on platoon structure, road type, time period, data source, and lane as shown in Figure 2.237

3.2 Phase II: Analysis238

Phase II focuses on analysis. In the first step, two samples of equal sizes are taken from LFA and239

LFL datasets. Next, partial autocorrelation analysis is employed to detect autocorrelation lags.240

Using these identified lags, differencing is applied to stationarize the randomly selected time series.241

Next, we define the factors of interest, which alongside time headway will be used for fitting the242

ANOVA model. For human drivers, there is an empirical preferable time headway interval towards243

the preceding vehicle (Fuller (1981); Das and Maurya (2017)). When time headway is shorter than244

the lower bound, drivers are more likely to slow down, while when the time headway is longer245

than the upper bound, drivers may either keep the current speed or accelerate to catch up with246

the preceding vehicle. The basic idea is that when the time headway is inside the interval, human247

drivers will feel comfortable and will not overreact unless there is an external disturbance. This248

preferable time headway is also influenced by many factors (e.g., road configuration, lane, etc.).249

Generally, there is no universal standard, and this interval can be determined from the observed250

data itself. We use the distribution of time headway in the LFA dataset to define the preferable251

time headway.252

Once the factors of interest are identified and before fitting the nested model, we first create253

balanced datasets. To obtain balanced datasets we sample time headways without replacement254

from LFL and LFA datasets so that the same number of data points will be available in each255

branch of the nested design. Next, the ANOVA model is fitted using balanced datasets. Finally, we256

confirm the adequacy of the fitted model, and conduct follow-up pair-wise comparisons to isolate257

the effects that are significantly different, as displayed in Figure 1. The major steps of the analysis258

are detailed in the following.259

3.3 Analysis of Variance260

Analysis of Variance (ANOVA) is one of the most well-known statistical tools for evaluating the261

existence of significant differences between factor levels on a continuous measurement (Tabachnick262

and Fidell, 2013). A factorial ANOVA can be implemented to examine the impacts of independent263

categorical factors on a continuous target variable. Factorial ANOVA is an appropriate approach264

to study whether there exists a statistically significant difference in the time headway patterns265
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of LFA and LFL platoon structures based on different factors and their levels. One of the main266

requirements of ANOVA is the independence of observations. The underlying sequential and time267

dependant nature of time series data is a direct violation of this requirement. To address this268

issue, we apply a two-step data processing procedure. First, we randomly (without replacement)269

down-sample the time series to remove any potential dependencies. Next, we render the randomly270

selected time series approximately stationary through differencing to remove auto-correlation.271

3.3.1 Stationarity and Partial Auto-Correlation272

In time series, auto-correlation is the correlation between two observations at different time273

stamps, where these observations correlate with themselves repetitively at certain lags. Auto-274

correlation and partial auto-correlation plots can be used to study the auto-correlation of time series.275

Although auto-correlation plots can measure and visualize the correlation between observations for276

a predefined set of lags, they fail to account for the propagation of correlation among successive lags.277

Partial auto-correlation analysis addresses this problem by isolating the auto-correlation lag. In this278

work, we use partial auto-correlation plots to identify auto-correlation lags, and apply differencing279

at the identified lags to stationarize the time headway time series. We discard data points that280

cannot be stationarized by first level differencing.281

3.3.2 Nested Fixed Effect Model282

The design of the fitted factorial ANOVA is highly dependent on the structure of the collected data.283

Fig. 2 displays the factors of interest. A total of five factors are considered in this study. The first284

factor, platoon structure, models whether the reported time headway profiles belong to an LFL or285

an LFA pair. The second factor, road type, represents whether the data is collected from an urban286

road network (i.e., Palo Alto, CA and Lankershim Blvd, CA) or a freeway (i.e., US 101, CA and287

I-80, CA). The third factor, time period, models whether the data in collected during the morning288

(i.e., 7:50am - 9:00am) or afternoon (i.e., 4:00pm - 5:30pm) peak period.289

The fourth factor studies whether the source of the collected data has any significant impact on290

human driving behavior. Data source is defined as a factor to account for the impact of different291

data collection techniques and locations in NGSIM and Lyft L5 datasets. The final factor, lane,292

represents the lane at which the data has been collected. This factor is considered because the293

lane in which a vehicle travels could impact its car following behaviour. As the number of lanes is294
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Figure 2: The Structure of the proposed nested model.

different across data collection sites, we used one-way ANOVA to group lanes that failed to show a295

statistically significant difference in their car following behaviour based on time headway analysis.296

As a result, the lane levels simplified to the left (i.e., speeding) lane, the middle lanes, and the right297

(merging) lane. Note that the high occupancy vehicle lanes were filtered out in this study when298

present.299

The factorial ANOVA relies on the underlying relationships between these different factors.

Note that AVs are only present in the Lyft L5 dataset and the Lyft L5 data is limited to an urban

environment. Furthermore, AV trajectories only appear on the right lane. As such, the values of

factors data source, lane, and road type are restricted to the values of the factor platoon structure,

leading to the choice of a nested factorial ANOVA as shown in Equation (1).

Yl(ijknm) = µ+ αi + βj + (α× β)ij + γk(j)

+ λm(j) + θn(j) + ϵl(ijknm),

for i, j, k,m ∈ {1, 2} and n ∈ {1, 2, 3} (1)

where µ represents the overall mean, and αi, βj , γk(j), λm(j), and θn(j) capture the effects of time300

period, platoon structure, data source, road type, and lane, respectively. The parenthetical301

subscriptions illustrate the nesting structure of the model. The (α × β)ij models the interaction302

effects between factors time period and platoon structure. Here, ϵl(ijknm) represents the error303
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term, which is assumed to follow N(0, σ2). In addition to the normality and constant assumptions304

regarding the error term, the fitted model should also satisfy the following constraints:305

∑
i

αi = 0 (2a)

∑
j

βj = 0 (2b)

∑
i

(α× β)ij = 0, ∀j ∈ {1, 2} (2c)

∑
j

(α× β)ij = 0, ∀i ∈ {1, 2} (2d)

∑
k

γk(j) = 0, ∀j ∈ {1, 2} (2e)

∑
m

λm(j) = 0, ∀j ∈ {1, 2} (2f)

∑
n

θn(j) = 0, ∀j ∈ {1, 2} (2g)

As the nested factorial model in Equation (1) is not identifiable, the additional sets of constraints306

in Equation (2) help narrow down the solution space to a unique set of fitted parameters. Using a307

single ANOVA model, we define several hypotheses tests to assess the significance of each factor,308

with the null hypothesis in each case indicating that the mean time headways are similar for different309

values of a given factor, and the alternative hypothesis indicating otherwise. Nested factors (i.e.,310

data source, lane, and road type) are added to absorb some of the unexplained variability. As a311

result, specific hypothesis tests associated with nested factors are of lesser importance.312

Although a rejection of the null hypothesis in the ANOVA analysis signals the existence of313

a significant effect (i.e., factor), it fails to identify the factor level that is significantly different,314

specifically in the presence of interaction effects. As a result, ANOVA analyses are usually followed315

by pairwise comparisons. While studying the effects of multiple factor levels, comparisons between316

the individual means of either factor may be made using any pairwise comparison technique. We317

use Least Square Means to investigate the significance of the factors and apply Tukey’s HSD method318

to adjust the significance level Abdi and Williams (2010).319

Multiple assumptions are made prior to fitting the nested fixed effect model. As a result, the320

adequacy of the model relies on whether these assumptions hold true. These assumptions include321
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1) the normality of the residuals, i.e., ϵl(ijknm) ∼ N(0, σ2), and 2) the homogeneity of the residuals.322

Many mathematical tests are developed for checking the normality and homogeneity of the residuals323

(e.g., the Shapiro-Wilk test ). One problem with such tests is that as the sample size increases, the324

test results are more likely to fail for even minor departures from normality or homoscedasticity.325

Therefore, in this paper we rely on visualization approaches instead.326

4 Data327

The raw data within both repositories are collected using different sensors such as digital video328

cameras, radars and lidars.329

4.1 Lyft L5 Dataset330

The Lyft L5 Prediction data repository was released by the Lyft Level 5 team in June 2020 Houston331

et al. (2020). This data repository contains raw camera/lidar/radar data collected from a fleet of332

23 AVs operating along a fixed high-demand route in Palo Alto, CA, from October 2019 to March333

2020. An internal perception stack has already been applied to report information such as the334

vehicle position based on a global coordinate system, velocity, and a unique ID for each agent. We335

extract the time headway series of each legacy vehicle in an LFA platoon structure for the purpose336

of this study.337

4.2 NGSIM Dataset338

The Next Generation Simulation (NGSIM) is a well known dataset published by the U.S.339

Department of Transportation Intelligent Transportation Systems Joint Program Office (JPO) NGS340

(2021). This dataset includes detailed vehicle trajectory data collected in four sites: southbound341

US 101 and Lankershim Boulevard in Los Angeles, CA, eastbound I-80 in Emeryville, CA, and342

Peachtree Street in Atlanta, Georgia. The data is collected in different time periods from April343

20, 2005 to November 9, 2006. The dataset contains vehicle ID, global coordinates of the vehicle,344

vehicle type, velocity, acceleration, space headway, and time headway, among other attributes. We345

extract the time headway series of each vehicle in each regular (non-carpool) lane at each site for346

the purpose of this study.347
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4.3 Data Processing Pipeline348

To fully leverage the abundant data in the Lyft L5 and NGSIM datasets for ANOVA, a modular349

data processing pipeline is developed with three blocks: time headway calculation, change point350

analysis, and down-sampling and filtering. A detailed explanation of the processing pipeline is351

given for the Lyft L5 dataset.352

• Time headway calculation: Realizing that the driving behavior in different lanes on the same353

road may be different, the lane-specific time headway data is of our interest. To stay consistent354

with the NGSIM dataset, all the raw data in the L5 dataset is taken from the multi-lane roads.355

By utilizing the provided semantic map with 8.500 discrete lane segments, a customized356

semantic map is constructed by connecting any lanes that physically belong to the same357

continuous lane (multiple lane segments in the original semantic map may correspond to the358

same lane in the real world), referred as the augmented map. In the multi-lane roads, three359

lanes are identified (right lane, middle lane, and left lane). Given the position information of360

vehicles, the augmented map can immediately match the vehicles to the corresponding lanes.361

The time headway in the car-following mode is calculated as the travel time from the centroid362

of the following vehicle to the centroid of the preceding/leading vehicle based on the following363

vehicle’s speed.364

• Change point analysis: In investigating an AV’s effect on the following behaviour of human365

drivers, we need to construct a dataset in which the following human driver is aware that366

the leading vehicle is an AV. To this end, we conduct a change point analysis as described in367

section 3.1.1.368

• Down-sampling and filtering: The sampling frequency in both datasets is 10 Hz, and a369

high correlation among data points is present under such a high-frequency sampling regime.370

To ensure independence of observations, autocorrelation and partial autocorrelation are371

evaluated, and down-sampling of the time headway sequence is implemented. According to372

our evaluation results, 1 Hz is selected to be the updated sampling frequency. Furthermore,373

a filtering step is introduced to ensure that the time headway sequence satisfies the minimum374

length of containing at least 10 data points or 10-seconds of observation.375
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For the NGSIM dataset, as the lane information is readily available, only the down-sampling376

and filtering module will be used.377

5 Results and Discussion378

In this section, we present the results of our proposed framework. In accordance with the flow of379

the framework, we first stationarize the time headway time series through differencing and partial380

auto-correlation analysis. Then, we balanced our dataset. Next, we test our hypotheses using381

nested factorial ANOVA, followed by pairwise comparisons.382

5.1 Down-sampling and Auto-correlation Analysis383

Since the sample frequency in Lyft L5 and NGSIM datasets is high (10 Hz), data points may384

correlate with each other at such high frequency and thus introduce unnecessary bias into the385

results. A common approach to reduce autocorrelation is to down-sample the data at a slower386

frequency. We test Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF)387

at down-sampling frequencies of 2Hz and 1Hz, in comparison with the original data. Decreasing388

sample frequency can significantly reduce both ACF and PACF at higher lags. Down-sampling389

at 1 Hz can reduce the magnitude of the auto-correlation lags. Differencing at lag one further390

stationalizes the time series. As the majority of the time series are not significantly auto-correlated391

after lag 1 differencing, the non-stationary ones are dropped at this step.392

Some interesting takeaways may be discussed before presenting the ANOVA results. In a freeway393

driving environment, e.g., US 101 and I-80, after down-sampling at 1 Hz, there is still a significant394

autocorrelation at lag 1 and neutrally-distributed partial autocorrelation (PAC) after lag 2. In395

an urban driving environment, Lankershim Blvd and Lyft L5, a similar pattern can be observed;396

however, at lag 1, a relative smaller ratio of data is correlated. An interpretation for this difference is397

that in freeways, human drivers encounter fewer external disturbances and therefore their behavior398

is more consistent and predictable. A neutral-distributed outbound PAC after lag 2 indicates that399

the behaviors tend to be random in 2 seconds into the future. If we view a human driver as a400

controller, s/he will control the time headway to the leading vehicle roughly at some period, which401

can be determined by the lag where outbound PAC values are approximately neutral-distributed.402
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5.2 Factorial Analysis403

The processed dataset contains a total of 537,060 data points, out of which 5,774 (i.e., 1%) of404

data points represent the LFA structure while the remaining 531,285 (i.e., 99%) belong to the LFL405

platoon structure. In order to maximize the power of the factorial analysis, the dataset should406

be balanced. In addition, balancing helps protect the analysis against small departures from the407

assumptions. Although the balancing effort reduces the total size of the dataset (i.e., 25 data points408

per each leaf in Figure 2) through random sampling, it improves the the distribution of the data409

within different factor levels, including platoon structure: 85% for LFL and 15% LFA; Road type:410

46% for freeway and 54% urban; Time period: 53% for morning and 45% afternoon; Lane: 31%411

for left, 31% for middle and 38% right.412

The nested factorial ANOVA introduced in Equation 1 is fitted and its results are displayed in413

Table 1. The fitted model allows us to study whether there are statistically significant associations414

between the time headway and the factors introduced in Figure 1. Table 1 reports findings on415

the main effects (i.e., time period and platoon structure factors), nested effects (i.e., data source,416

road type, and lane factors), as well the interaction effects between the time period and platoon417

structure factors.418

Table 1: Results of the nested fixed model
Factor DoF SSE MSE F Statistics P-Value α

Time Period 1 1.46 1.46 1.55 0.21
Platoon Structure 1 49.86 49.86 52.81 2.88e-12 0.001
Platoon Structure × Time 1 1.09 1.09 1.16 0.28
Platoon Structure: Data Source 1 0.03 0.03 0.04 0.85
Platoon Structure: Road Type 1 1.92 1.92 2.03 0.15
Platoon Structure: Lane 2 0.01 0.006 0.006 0.99
Residuals 317 299.28 0.94

The first three rows in Table 1 correspond to hypotheses on time period, platoon structure,419

and the interaction effect between time period and platoon structure factors. The next three rows420

display the impact of data source, road type, and lane as nested factors of platoon structure,421

respectively. The last row provides some information regarding the residuals. For each one of the422

hypotheses of interest, Table 1 reports the degree of freedom (DoF) of the test, sum of squared423

errors (SSE), mean square errors (MSE), as well as the F-statistics, its corresponding p-value,424

and the significance level at which a conclusion is made. The reported p-values can assess the425
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null hypotheses and determine whether the association between the time headway and the factors426

of interest are statistically significant. Table 1 reports that only the platooning structure is of427

significance at α = 0.001. The results also highlights the fact that the collected time headway data428

are not impacted by the differences in data collection techniques and locations in NGSIM and Lyft429

L5 datasets at a statistically significant level. To further study the results reported in Table 1,430

multiple follow up pairwise comparisons are conducted to understand which levels of the platoon431

structure factor are significantly different given the nested structure. Table 2 illustrates the results432

of the pairwise comparisons.433

Table 2: Pairwise comparisons using least square means
Estimate SE T Ratio P-Value α

Time Period (Morning vs Afternoon) : Platoon Structure (LFL vs LFA)
Morning LFL - Afternoon LFL -0.132 0.132 -0.996 0.7519
Morning LFL - Morning LFA 0.944 0.215 4.39 0.0001 0.001
Morning LFL - Afternoon LFA 1.055 0.215 4.91 <.0001 0.001
Afternoon LFL - Morning LFA 1.075 0.218 4.93 <.0001 0.001
Afternoon LFL - Afternoon LFA 1.187 0.218 5.44 <.0001 0.001
Morning LFA - Afternoon LFA 0.112 0.275 0.40 0.9774

Lane (Left vs Middle vs Right) : Platoon Structure (LFL vs LFA)
Left LFL - Middle LFL 0.013 0.138 0.098 0.9997
Left LFL - Right LFL 0.016 0.158 -0.103 0.9996
Left LFL - Right LFA 1.073 0.0171 6.279 <.0001 0.001
Middle LFL - Right LFL -0.003 0.160 -0.022 1.000
Middle LFL - Right LFA 1.061 0.171 6.279 <.0001 0.001
Right LFL - Right LFA 1.057 0.191 6.20 <.0001 0.001

Although the platoon structure is the only significant factor as reported in Table 1, the434

interaction effect between time period and platoon structure and the nesting factors may have435

obscured the comparisons between the means of different levels of the platoon structure. As a result,436

the least squared method is applied to the means of one of the factors, with the remaining factor437

set at a particular level. In addition, as pairwise comparisons lead to inflation of the significance438

level, the p-values within Table 2 are adjusted based on the Tukey method for comparing a family439

of multiple estimators.440

Table 2 reports the estimated difference between means (i.e., estimate), the standard error of441

that estimate (i.e., SE), the T ratio, and its corresponding p-value along with the reported level442

of significance α. The top half of Table 2 studies the pairwise comparisons between time period443

and platoon structure. Here, results are averaged over the levels of lane (i.e., left, middle, and444
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right), road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5). As shown445

in Table 2, other than the Morning LFL - Afternoon LFL and Morning LFA - Afternoon LFA, the446

remaining levels between time period and platoon structure are significant.447

The bottom half of Table 2 studies the interaction between the nested factor lane and the main448

factor platoon structure. Here, results are averaged over the levels of time period (i.e., morning and449

afternoon), road type (i.e., freeway and urban), and data source (i.e., NGSIM and Lyft L5). This450

table demonstrates that while the LFL behavior does not significantly differ within the middle,451

left, and right lanes, it does significantly differ within the left and right, middle and right, as well452

as right and right lanes when compared to LFA. It also shows that although LFL and LFA display453

statistically different behaviors in different lanes, they do exhibit statistically significantly different454

behaviors even within the same right lane. Although the proposed nested factorial model recognizes455

platooning structure leads to a statistically significant different car-following behaviour, and the456

follow-up pair-wise comparisons further confirm this, none of these approaches can identify whether457

the THW of LFA is less than or greater of LFL’s THW. Figure XX demonstrates that LFL has458

higher mean and variance THW values when compared to LFA.459

Figure 3: The distribution of time headway over factor levels.

As displayed in Figure 2, LFA has lower median (1.38), mean (0.41), and variance (o.31) values460

in comparison to LFL which has scores of median (2.48), mean (0.85), and variance (1.05). The461

reduction in the mean time headway manifests in less bumper-to-head distance, enabling more462

vehicles to operate on the road and increasing the road capacity. The reduction in the variance of463

time headway leads to a more stable traffic flow.464
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The final step is the verification of the fitted model’s adequacy through Q-Q and residuals465

plots as shown in Figure 4. To check the adequacy of the model, Q-Q plots of residuals and466

residuals versus fitted values are shown in Figure 4. Q-Q plots are commonly used to confirm the467

normality of the residuals, i.e., ϵl(ijknm) ∼ N(0, σ2). As a Q-Q plot is a scatter plot created by468

plotting the actual quantiles of the residuals of the fitted model against the theoretical normally469

distributed ones, a diagonal line is a confirmation that both sets of quantiles came from the same470

distribution. In the Q-Q plot in Figure 4, the residuals roughly lie around the 45-degree line,471

suggesting that the they are approximately normally distributed. The homogeneity of the residuals472

can be validated using the residuals plot. If the variance of the error term is homogeneous, not473

only should the residuals plot show no pattern, but also the spread of residuals should be equal per474

group across corresponding fitted values. The residuals plot in Figure 4 show that the variances are475

approximately homogeneous since the residuals are distributed approximately equally above and476

below zero.

(a) Q-Q plot (b) Residuals v.s. fitted values
Figure 4: Adequacy check of the fitted nested fixed effect model

477

6 Conclusions478

In this study we proposed a nested factorial model to study the potential effects of autonomous479

vehicles on human drivers’ car-following behavior using naturalistic driving data (i.e., NGSIM and480

Lyft L5 prediction datasets). The objective of this study was to bridge the gap between anticipated481

and real-world impacts of AVs on traffic streams and roadway safety and capacity. The proposed482

nested model studied the impact of different factors such as platoon structure (i.e., whether a human483

driver follows a legacy vehicle or an AV), time period, traveling lane, and road type on the time484

headway between two vehicles, which is considered as a proxy for the car following behaviour of the485
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following vehicle. The results indicate that the platoon structure affects the car following behavior486

of human drivers in a statistically significant manner, allowing us to conclude that in a real-world487

setting, a human driver’s car following behaviour when following a legacy vehicle is different from488

following an autonomous vehicle. Furthermore, our analysis illustrates that the difference in car489

following behaviour is significantly present regardless of the traveling lane or the time period.490
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