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A B S T R A C T   

Proper insulin management is vital for maintaining stable blood sugar levels and preventing complications 
associated with diabetes. However, the soaring costs of insulin present significant challenges to ensuring 
affordable management. This paper conducts a comprehensive review of current literature on the application of 
machine learning (ML) in insulin management for diabetes patients, particularly focusing on enhancing 
affordability and accessibility within the United States. The review encompasses various facets of insulin man-
agement, including dosage calculation and response, prediction of blood glucose and insulin sensitivity, initial 
insulin estimation, resistance prediction, treatment adherence, complications, hypoglycemia prediction, and 
lifestyle modifications. Additionally, the study identifies key limitations in the utilization of ML within the in-
sulin management literature and suggests future research directions aimed at furthering accessible and afford-
able insulin treatments. These proposed directions include exploring insurance coverage, optimizing insulin type 
selection, assessing the impact of biosimilar insulin and market competition, considering mental health factors, 
evaluating insulin delivery options, addressing cost-related issues affecting insulin usage and adherence, and 
selecting appropriate patient cost-sharing programs. By examining the potential of ML in addressing insulin 
management affordability and accessibility, this work aims to envision improved and cost-effective insulin 
management practices. It not only highlights existing research gaps but also offers insights into future directions, 
guiding the development of innovative solutions that have the potential to revolutionize insulin management and 
benefit patients reliant on this life-saving treatment.   

1. Introduction 

According to the World Health Organization (WHO), diabetes 
directly accounted for approximately 1.5 million deaths in 2019, nearly 
half of which occurred before the age of 70. As per the American Dia-
betes Association (ADA), diabetes ranked as the seventh leading cause of 
death in the United States (US), with 87,647 death certificates attrib-
uting to it. Globally, an estimated 463 million individuals were living 
with diabetes in 2019, with this chronic disease significantly contrib-
uting to costly and debilitating complications such as cardiovascular 
disease, retinopathy, neuropathy, nephropathy, and neurocognitive 
decline [1]. Notably, diabetes can reduce life expectancy by 4 to 10 
years for individuals aged 40 to 60 and independently elevate mortality 
risk [1]. As reported by Parker et al. [2], the total annual expenditure for 
diabetes in 2022 reached $412.9 billion, comprising $306.6 billion in 
direct medical costs and $106.3 billion in indirect costs associated with 
diabetes. These indirect costs include increased absenteeism, reduced 

productivity for employed individuals, decreased productivity for those 
not in the workforce, inability to work due to disease-related disability, 
and lost productivity due to premature deaths. 

Individuals diagnosed with type 1 diabetes (T1D) rely on insulin to 
ensure their survival, maintain optimal blood glucose levels, and miti-
gate the risk of complications. Similarly, individuals suffering from type 
2 diabetes (T2D) turn to insulin when their oral medications lose effi-
cacy as the disease progresses, aiming to regulate blood glucose levels 
and prevent complications [1,3,4]. The groundbreaking discovery of 
insulin in 1921 stands as an unparalleled milestone in medical history, 
revolutionizing the treatment landscape for individuals with diabetes 
[5]. The profound impact of insulin therapy on crucial aspects such as 
well-being, weight restoration, energy levels, and the prevention of 
diabetic ketoacidosis cannot be overstated [5]. Among the 30.3 million 
Americans affected by diabetes, approximately 7.4 million individuals 
rely on one or more forms of insulin for managing their condition [6]. 
While progress in insulin therapy and delivery methods has significantly 
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improved outcomes and lessened the daily treatment burden over time, 
the global cost of insulin has seen a staggering increase [7]. The esca-
lating prices of insulin impose a substantial financial burden on patients. 
Notably, the US faces a substantial surge in insulin expenses, with 
commonly used analog insulin forms costing ten times more than in 
other developed countries [8]. Remarkably, expenditures on insulin in 
the US have tripled over the past decade, increasing from $8 billion in 
2012 to $22.3 billion in 2022 [2]. In comparison to other countries, the 
US exhibited markedly higher prices in each insulin category. Fig. 1 il-
lustrates the average price per standard unit by insulin type [9]. On a 
global scale, there is a significant price gap between human insulin and 
the pricier insulin analog formulations. Over time, there has been a 
rising trend in the utilization of insulin analogs compared to regular 
human insulin, particularly in more developed regions of the world 
[10,11]. Recognizing the urgency of this medical situation, the gravity 
of the issue is underscored by governmental intervention, exemplified 
by the enactment of President Biden’s Inflation Reduction Act [12,13]. 
This legislation targets the escalating costs of crucial medical treat-
ments, including insulin. 

The WHO’s health systems framework emphasizes the importance of 
a well-functioning system that provides equitable access to essential 
medical products, vaccines, and technologies with assured quality, 
safety, efficacy, and cost-effectiveness, while promoting their scientifi-
cally sound and cost-effective use [14]. However, millions of individuals 
with diabetes around the world continue to encounter challenges in 
obtaining life-saving insulin [15]. Accessing insulin is becoming an 
increasingly significant public health concern, especially for those who 
rely on it for their survival and for them lack of access leads to hyper-
glycemia within a matter of days or weeks [15,16]. Uninterrupted access 
to insulin is crucial for patients due to the potential acute health risks, 
such as high blood sugar, including heart disease, kidney failure, 
blindness, nerve damage, amputations, and potentially fatal diabetic 
ketoacidosis (DKA) [15,17]. The US faces significant challenges when it 
comes to the affordability and accessibility of insulin, including the list 
price escalation, inconsistent insurance coverage, complexity of the in-
sulin supply chain and pricing mechanisms, limited competition within 
the insulin market, and a lack of readily available generic alternatives 
([18]; The Lancet Diabetes [14,15,19–21]). 

Diabetes can be effectively controlled through a balanced combina-
tion of a healthy diet, regular physical activity, and appropriate medi-
cation as required [4,22]. The rising cost of insulin and costs associated 
with diabetes-related supplies have led to subsequent underuse 
[4,23,24]. It is shown that in 2017 at the Yale diabetes center, a quarter 
of patients admitted to using less insulin than prescribed, discontinuing 
insulin use, or struggling to fulfill their insulin prescriptions, all of which 
are linked to poor glycemic control [23,25]. It is estimated that one- 
fourth of the 7 million Americans who require insulin have encoun-
tered difficulties affording their medication; consequently, they have 
resorted to using insulin less frequently than prescribed and injecting 
expired doses, leading to worsened glycemic control, hospitalizations 
due to DKA, and even death [26]. 

Artificial intelligence (AI), particularly machine learning (ML), 

possesses the ability to handle and process vast amounts of information 
in a variety of applications such as manufacturing [27], agriculture [28], 
healthcare [29–33], and transportation [34] in capacities of predictive 
and prescriptive analytics. AI and ML have transformed the management 
of complex diseases like diabetes and cancer by enabling the develop-
ment of decision-support tools and applications. These tools aid in early 
detection and diagnosis, personalized treatment planning, predictive 
analytics for disease progression, drug discovery and development, 
remote monitoring and management, and clinical decision support [35]. 
Overall, AI and ML enhance patient outcomes and reduce healthcare 
costs by leveraging data-driven insights to optimize care delivery 
[36–38]. The following provides an overview of the review papers 
focusing on the application of AI and ML in diabetes and insulin man-
agement (Table A1 in Appendix A contains the overview of each review 
paper, along with their corresponding categorization points): 

1.1. Prediction, diagnosis, and management of diabetes 

Afsaneh et al. [39] provided a comprehensive review of the recent 
applications of ML and deep learning (DL) models in the prediction, 
diagnosis, and management of diabetes. Chaki et al. [40] presented a 
systematic review that provides a comprehensive analysis of the latest 
techniques and advancements in the field of diabetes detection, diag-
nosis, and self-management using ML and AI. Nomura et al. [37] 
explored the potential of AI and ML in the field of diabetes management 
and prediction. They discussed the current advancements in AI tech-
nologies that mimic the “hidden tips of treatments by a specialist,” such 
as fine-tuning insulin dose, and presents examples of AI-based medical 
devices approved by the US Food and Drug Administration (FDA) for 
diabetes management. Gautier et al. [41] presented a review that fo-
cuses on the potential of AI in understanding and managing diabetes 
including AI and understanding risk factors; AI and improving diagnosis; 
AI and understanding diabetes pathophysiology; AI and understanding 
the natural history of diabetes; and AI and managing diabetes. Broome 
et al. [42] discussed the policy implications of AI and ML in diabetes 
management and identified key challenges that must be overcome to 
leverage ML to its full potential, such as secure and trustworthy data 
sharing, collaboration between clinicians and developers, and the need 
for models that balance public good with profitability. The study of 
Fatima and Pasha [43] was a survey of ML algorithms for disease 
diagnostic, emphasizing the importance of computer aided diagnosis in 
medical imaging and the need for accurate diagnostic systems to avoid 
misleading medical treatments. The survey covered various ML tech-
niques used in different diseases, including cancer, heart disease, and 
diabetes. Donsa et al. [44] focused on therapy process and identified 
open problems and challenges for the personalization of diabetes ther-
apy using computerized decision support system (DSS) and ML. 

1.2. Optimizing insulin usage/delivery 

Burnside et al. [45] discussed the role of AI and ML in optimizing 
insulin dosing strategies and developing personalized prediction tools. 
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Fig. 1. Average price per standard unit by insulin type [9].  
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Thomsen et al. [46] provided an overview of methods used for basal 
insulin dose guidance supporting titration of people with T2D, and 
categorizing these methods by characteristics, effect, and user experi-
ence. Vettoretti et al. [47] reviewed the latest AI methodologies and 
continuous glucose monitoring (CGM) sensor utilization for decision 
support in advanced T1D management, including personalized insulin 
calculations, adaptive parameter tuning, and glucose prediction. For-
lenza [48] discussed the use of AI and automated decision support to 
improve diabetes outcomes using multiple daily injections therapy. 

1.3. Predicting glucose levels and optimizing usage of insulin 

Makroum et al. [49] conducted a systematic review and explored the 
potential of ML and smart devices in managing diabetes and predicting 
postprandial glycemic status and adapting the delivery of insulin bolus 
(IB). Additionally, it emphasized the integration of AI with smart de-
vices, wearables, smartphones, and sensor technology to build a ma-
chine capable of supervising and monitoring people with diabetes 
continuously. Dankwa-Mullan et al. [50] explored various AI-powered 
tools and technologies, such as automated retinal screening, patient 
self-management tools, glucose sensors, and insulin pumps. The paper 
also highlighted the benefits of AI in diabetes care, including improved 
patient and clinician engagement, personalized insights, and better 
control of blood glucose levels. 

1.4. Education 

Li et al. [51] provided an overview of the potential of AI in diabetes 
education and management. They discussed various AI applications in 
diabetes care, including personalized education, glucose monitoring, 
and insulin delivery. 

1.5. Predicting glucose levels 

Zale and Mathioudakis [52] reviewed the clinical evidence for the 
role of ML models in predicting hospitalized patients’ glucose trajectory. 
They concluded that advanced ML models using large Electronic Health 
Record (EHR) datasets with large numbers of clinical predictors achieve 
greater predictive accuracy for glucose than more traditional regression 
modeling techniques in hospitalized patients. Alhaddad et al. [53] 
focused on the use of ML algorithms in non-invasive blood glucose 
monitoring using wearable sensors. They discussed the challenges of 
acquiring enough comprehensive data to train and test models that can 
be generalized to a wider population, as well as the need for larger 
studies with more participants to account for inter-individual differ-
ences and establish better validation of proposed solutions. Woldaregay 
et al. [54,55] identified, assessed, and analyzed the state-of-the-art ML 
strategies in blood glucose anomaly classification and detection 
including glycemic variability, hyperglycemia, and hypoglycemia in 
people with T1D. The review covered ML approaches pertinent to 
personalized DSSs and blood glucose alarm events applications in T1D. 

1.6. Predicting hypoglycemia 

Mujahid et al. [56] reviewed the literature on ML techniques for 
hypoglycemia prediction in diabetic patients, focusing on studies pub-
lished in the last five years. Tyler and Jacobs [57] provided a compre-
hensive review of computational, and AI based DSSs for managing T1D. 
The DSSs were categorized into two groups: those recommending insulin 
adjustments and those predicting and preventing hypoglycemia. The 
review examined the AI techniques employed in each system, evaluated 
their performance, and discussed potential applications in managing 
T1D. Wearable CGM sensors are transforming the treatment of T1D by 
providing real-time information on blood glucose levels and rate of 
change. This data is crucial for determining insulin dosage and pre-
dicting adverse events. 

1.7. Predicting diabetes complications 

Ellahham [58] explored the potential of AI in revolutionizing the 
diagnosis and management of diabetes. It highlighted the use of pre-
dictive models and algorithms to assess the risk of developing compli-
cations and predict the onset of diabetes. Kavakiotis et al. [59] reviewed 
how ML and data mining techniques have been used in predicting and 
diagnosing diabetes, studying diabetic complications, exploring the 
genetic background and environment of the disease, and improving 
healthcare and management for diabetes patients. They emphasized the 
popularity of prediction and diagnosis studies and the dominance of 
supervised learning approaches. 

1.8. Utilizing various ML techniques/AI tools in diabetes research 

Abhari et al. [60] reviewed the use various AI techniques, such as 
ML, natural language processing (NLP), robotics, fuzzy logic (FL), expert 
systems (ES), knowledge base (KB), and the mix of two or more methods 
(multi-methods), and how they in T2D care including disease proba-
bility prediction, screening, diagnosis, treatment guidance, and 
complication management. Singla et al. [61] discussed the use of ML and 
AI in the management of chronic diseases, specifically diabetes. The 
paper suggested that careful data collection and a gradual transition 
from supervised to unsupervised ML can help overcome challenges. 
Indoria and Rathore [62] compared the performance of two ML tech-
niques, Artificial Neural Network (ANN) and Bayesian network, in the 
classification of diabetes and cardiovascular diseases. Rigla et al. [63] 
discussed the transformation of diabetes management with the addition 
of CGM and insulin pump data, as well as the availability of a wide 
variety of physiological variables through wearable devices. They 
highlighted the most frequently used AI tools in healthcare, including 
neural networks, fuzzy logic, and expert systems, providing applied 
examples in diabetes management. 

While existing literature provide ample evidence supporting the 
effectiveness of ML models in certain domains, particularly in predicting 
and treating diabetes (Contreras & Vehdi, 2018), a notable gap remains, 
prompting the offering of a unified review on the latest efforts and ad-
vances in data-driven modeling and supervised ML techniques employed 
in affordable and accessible insulin management for diabetes. Super-
vised ML involves training models using labeled data or input/output 
pairs to predict future outcomes, aiming to approximate a function that 
can effectively predict outputs for new inputs [38]. The paper identifies 
crucial themes, addresses the limitations of current methods, and pro-
poses potential avenues for future research to yield more insightful 
outcomes in this domain. 

2. Materials and methods 

This review aims to provide a comprehensive overview of the 
application of supervised ML in the management of insulin for diabetes. 
This review seeks to gather a thorough understanding of how supervised 
ML techniques can be effectively utilized in addressing the challenges 
related to insulin accessibility and affordability in diabetes manage-
ment. The methodology imbedded to select the recent literature de-
velopments concerning the topics of data driven and supervised ML 
models for effective and affordable insulin treatment are discussed here. 
Papers from 2015 to 2023 were reviewed due to the increase in publi-
cations during this time span. The complete list of keywords is presented 
in Fig. 2. 

This search was narrowed down to 350 papers in English, focusing on 
the intersection of ML and diabetes management from Google Scholar 
and PubMed search engines. The search strategy excluded papers that 
examined alternative anti-diabetic medications, predictions and di-
agnoses of diabetes, unsupervised learning, reinforcement learning (RL), 
as well as papers solely focused on lifestyle-related diabetes manage-
ment. Ultimately, a total of 153 papers were selected for inclusion in this 
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review that delves into various facets of insulin management. These 
encompass insulin dosage calculation, automatic insulin delivery, in-
sulin administration, insulin injection policy, blood glucose prediction, 
initial insulin estimation, insulin resistance prediction, improving 
adherence to insulin treatment, predicting insulin related hypoglycemia 
risk, nocturnal hypoglycemia, impatient hypoglycemia, diabetes 
adverse complications prediction, and lifestyle-related diabetes man-
agement considering insulin treatment. Fig. 3 depicts the filtration 
process employed for the selection of papers in this study. Since this 
paper focuses on supervised ML, the readers can refer to Fox and Wiens 
[64], Tejedor et al. [65], Emerson et al. [66], Manzini et al. [67], Ahmad 
et al. [68], Yau et al. [69], and in order to reach papers in the application 
of unsupervised and instance-based ML in insulin treatment of diabetes 
patients. 

3. Results 

The management of insulin for diabetes can be classified into eight 
distinct categories, C1 to C8, as illustrated in Fig. 4. This section provides 
a comprehensive review of the implementation of ML models in each 
category. In Appendix A, Tables A2–A8 highlight the specific type of 
diabetes, the ML approach employed, the inputs and outputs utilized by 
each model, as well as the outcomes reported in each study. Moreover, 
Table A8 presents information about the data utilized for implementing 
and validating the proposed ML algorithms in each study. 

3.1. Insulin dosage calculation and response to it 

Mosquera-Lopez et al. [70] developed and evaluated a robust insulin 
delivery system, called the robust artificial pancreas that includes 

(a) (b)

Fig. 2. List of keywords in (a) tabular format, and (b) cloud of words.  

Fig. 3. Papers’ filtration process.  
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automated meal detection and carbohydrate content estimation using 
ML for meal insulin dosing. This system showed promising results in 
postprandial glucose control in a randomized, single-center crossover 
trial. Chen et al. [71] proposed an insulin dosage titration model using 
advanced ML methods, which has been implemented in the EHR 
workflow to form a clinical DSS of insulin dosage titration. The efficacy 
and safety of the proposed system has been preliminarily evaluated in 
T2D inpatients. Coales et al. [72] applied an ML approach to data from 
two randomized controlled trials characterizing individual mealtime 
insulin responses after subcutaneous injection of rapid-acting insulin in 
subjects with T1D treated by multiple daily injections. The study iden-
tified three distinct classes of patients based on their rapid-acting insulin 
responses, which were characterized by different pharmacokinetic 
summary statistics such as insulin area under the curve and insulin 
uptake. These classes were found to be associated with parameters of 
vascular health, such as blood pressure and arterial stiffness. Gupta and 
Jiwani [73] developed an ML model that uses a Recurrent Neural 
Network (RNN) with Long Short-Term Memory (LSTM) and ANN algo-
rithm to predict a patient’s insulin dose chart. de Farias and Bessa [74] 
developed an automated insulin delivery system using ANN. It can 
maintain normoglycemia without requiring meal announcements or 
carbohydrate calculations, and it is capable of handling inter- and intra 
patient variability. 

The detection system of personalized insulin dose manipulation 
proposed by Levy-Loboda et al. [75], leveraged ML algorithms to 
analyze raw data generated using an insulin pump and it’s paired CGM. 
The ML algorithms used in this study include decision tree, random 
forest (RF), support vector machine (SVM), K-nearest neighbor (KNN), 
and temporal probabilistic profiles (TPF) due their ability to handle 
missing values and leverage temporal abstractions. The main contribu-
tion of the proposed ML based model by Noaro et al. [170] was to 
improve the calculation of mealtime insulin boluses (MIB) in T1D 
therapy using CGM data. They developed four models based on multiple 
linear regression (MLR) and least absolute shrinkage and selection 
operator (LASSO) for MIB calculation using ML techniques in different 
mealtime scenarios. The models were compared with three state-of-the- 
art methods described in the literature which have the same objective. 
Jemima Jebaseeli et al. [76] proposed an Internet of Things (IoT) based 
Catboost ML algorithm suitable for efficiently handling the condition to 
predict the glucose level of the human body and suggesting the quantity 
of insulin required for the diabetic patient. Nguyen et al. [77] proposed 
an ML approach to estimate insulin requirements in hospitalized pa-
tients. The research aimed to ascertain if ML could provide a more 
precise forecast of the initial inpatient total daily insulin dose using EHR 
compared to the conventional dosing guidelines. Indragandhi et al. [78] 
proposed a bimodal insulin delivery system that utilizes IoT and ML 
techniques (linear regression, decision tree, and RF) to automate insulin 
drug delivery for comatose patients. This system aimed to replace 
existing insulin delivery systems that are costly and limited to certain 
hospitals, with a more affordable and accessible option. The proposed 

system also contained a rotor system controlled by a motor and can 
operate in either manual or automatic mode. 

Noaro et al. [79,80] developed two nonlinear models including 
LASSO for IB estimation, RF, and Gradient Boosting Trees (GBT) for IB 
estimation in T1D therapy. They improved the limitations of the 
empirical standard formula commonly used for insulin injections, which 
can lead to critical hypo/hyperglycemic episodes. The nonlinear models 
took into account both blood glucose dynamics at mealtime and other 
relevant features, and were found to significantly enhance glycemic 
control over linear techniques in simulated frameworks. Peiró [81] 
compared different therapies for T1D treatment and to show that an 
artificial pancreas (AP) consisting of an insulin pump with CGM and 
hybrid “closed-loop” control algorithm trained with ML technology 
provides better glycemia control. Guzman Gómez et al. [82] developed 
models based on AI techniques, specifically SVM, for the estimation of 
basal insulin dose for T1D. 

Due to deficiency of formulaic methods and closed-loop methods in 
blood glycemic control, Shifrin and Siegelmann [83] adopted a Markov 
decision process to model patient response to insulin treatment, 
enabling the system to dynamically adapt and discover a personalized 
insulin care policy that ensures stable blood glucose levels within 
desired ranges. To achieve even more precise glycemic control, they 
integrated an individualized health reward function into the model, 
which provides a tailored grading scheme for blood glucose levels, 
enhancing the accuracy of control. The model was solved using RL, 
resulting in an individualized and optimal insulin care policy capable of 
preventing hypoglycemia, minimizing the duration of high glucose 
levels and fluctuations, and adapting to changes in the patient’s envi-
ronment. Liu et al. [84] developed supervised ML methods such as SVM 
and RF classification to EHR data to build predictive models that can 
inform inpatient insulin management. The study found that individual 
blood glucose levels and insulin dosing are highly erratic and cannot be 
predicted precisely, but prescribing decisions can still be driven by the 
more reliable predictions of average daily glucose levels and whether 
any patient’s glucose levels will be higher than the clinically desired 
range in the next day. Malmasi et al. [85] assessed the precision in 
detecting instances where patients documented a decline in insulin 
therapy using various methods, including sentence-level naïve Bayes, 
logistic regression, and SVM-based classification (both with and without 
SMOTE oversampling). Additionally, they explored token-level 
sequence labeling through conditional random fields (CRFs), as well 
as uni- and bi-directional RNN models featuring GRU and LSTM cells. 
Rule-based detection using the Canary platform was also employed in 
the evaluation process. Daskalaki et al. [86] presented a novel control 
scheme for AP that addresses the challenges of inter− /intra-patient 
variability and personalization of insulin treatment. The control scheme 
was based on a real-time adaptive algorithm that optimizes insulin 
infusion for personalized glucose regulation. 

Fig. 4. Eight distinct categories of the literature in management of insulin for diabetes.  
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3.2. Blood glucose and insulin sensitivity prediction 

Kurdi et al. [87] used supervised ML algorithms including multi-
variable logistic regression, RF, and KNN to predict self-care behaviors 
and glycemic control in T1D patients on insulin pump therapy. The 
features were used to predict the likelihood of patients meeting self-care 
criteria and achieving good glycemic control within six months. Zafar 
et al. [88] assessed different ML-based prediction methods including 
KNN, RF, LSTM, SVM, and Gradient Boost (XGBoost) for glucose fore-
casting in insulin delivery systems, with a focus on their limitations and 
performance in terms of accuracy and resource consumption. Annuzzi 
et al. [89] investigated the impact of nutritional factors, including car-
bohydrates, proteins, lipids, fibers, and energy intake, on predicting 
blood glucose levels in the short and middle term using ML methods. 
Annuzzi et al. [90] studied the he impact of specific input features (pre- 
prandial blood glucose values, insulin dosage, and various mealrelated 
nutritional factors such as intake of energy, carbohydrates, proteins, 
lipids, fatty acids, fibers, glycemic index, and glycemic load) on blood 
glucose levels prediction by employing explainable artificial intelligence 
methodologies. 

Tarumi et al. [91] examined three methods for leveraging EHR data 
across various healthcare systems to predict the outcomes of pharma-
cotherapy for T2D including long-acting insulin medication class. 
Among these approaches, selecting better and weighted average pre-
served data within institutional confines by utilizing pre-existing pre-
diction models. In contrast, the third approach, known as combining 
data, involved consolidating raw patient data into a unified dataset. 

Szabó et al. [92] evaluated the clinical performance of two different 
AI-based methods for predicting insulin sensitivity in tight glycemic 
control treatment in intensive care settings. The performance of these 
methods was compared with the clinically validated intensive control 
insulin-nutrition-glucose model, which is widely used in tight glycemic 
control treatment. Miller et al. [93] developed a hybrid statistical and 
physiological model of insulin-glucose dynamics for producing long- 
term forecasts from real-world T1D management CGM, insulin, and 
meal log data. The hybrid model combined a T1D simulator with a ML 
sequence model. Specifically, the ML component of the model consisted 
of a state-space model and a neural network. The state-space model 
captured the underlying physiological dynamics of insulin-glucose in-
teractions, while the neural network component learned to map from 
past observations to future glucose levels. The neural network was 
trained using maximum-likelihood estimation to fit the parameters that 
produce good forecasts. However, due to the non-linearity introduced by 
the T1D simulator, computing the marginal likelihood of the data was 
not possible in closed form, which complicates inference. Nonetheless, 
this hybrid approach improved forecasts over purely mechanistic or 
purely statistical approaches on real-world T1D data and produces 
physiologically plausible counterfactual predictions under alternative 
insulin and meal schedules. Wang et al. [94] examined the overall 
condition of blood glucose regulation in insulin treated T2D patients 
receiving outpatient care in northern China. Additionally, the study 
investigated the potential utility of combining an elastic network (EN) 
with ML algorithms to predict diabetic blood glucose control. Xie and 
Wang [95] compared the performance of several commonly known ML 
models versus a classic Autoregression with Exogenous inputs (ARX) 
model in the prediction of blood glucose levels using time-series data of 
individuals with T1D who were under insulin pump therapy. The ML 
algorithms used in this study include ML-based regression models and 
DL models such as a vanilla LSTM network and a Temporal Convolution 
Network (TCN). The ML-based regression models implemented in this 
study include SVM, RF Regression, Gradient Boosting Regression (GBR), 
and Multi-Layer Perceptron Regression (MLPR). These algorithms were 
compared to the classic ARX model. 

Benyó et al. [96] applied deep neural network (DNN) based methods 
for patient state prediction and insulin sensitivity prediction for 
personalized glycemic control in intensive care. Ngufor et al. [97] 

developed a mixed-effect ML framework that effectively utilizes tem-
poral heterogeneous, sparse and varying-length patient characteristics 
inherent in longitudinal data that can help predict longitudinal alter-
ation in glycemic control measured by hemoglobin A1c (HbA1c) among 
well-controlled adults with T2D with high accuracy, sensitivity, and 
specificity. Rodríguez-Rodríguez et al. [98] utilized the big data and ML 
techniques including Autoregressive integrated moving average 
(ARIMA), RF, and SVM in predicting short-term blood glucose levels in 
T1D. 

3.3. Initial insulin estimation 

Musacchio et al. [99] used transparent ML (i.e. Logic Learning Ma-
chine (LLM), a type of explainable AI) to identify the key drivers behind 
the decision to start insulin therapy in individuals with T2D. The study 
found that the most important factors were high HbA1c levels, long 
disease duration, and a history of cardiovascular disease. The results 
showed that the LLM algorithm was able to accurately predict insulin 
initiation, which is comparable to other state-of-the-art ML algorithms. 
Hankosky et al. [100] identified the predictors of insulin pump initiation 
among individuals with T2D using ML. The study used a US claims 
database to analyze the factors associated with insulin pump initiation 
among T2D patients (significant predictors: age, gender, comorbidities, 
and medication use). Fujihara et al. [101] aimed to assess the predictive 
capabilities of ML models in determining when specialists would initiate 
insulin treatment for T2D patients. The Japan Diabetes Clinical Data 
Management (JDDM) Study Group, composed of diabetes specialists, 
was used for evaluation. The researchers compared the decisions made 
by the ML models, trained on the database of specialists’ judgments, 
with those made by no specialists during the first consultation. 

3.4. Insulin resistance prediction 

Leal-Witt et al. [102] used an ML model (XGBoost algorithm using of 
a k-fold cross-validation approach to partition the dataset into training 
and test sets) to reveal an association between phenylalanine concen-
trations in dried blood spots and the risk of developing insulin resistance 
(IR) in adult subjects with phenylketonuria. According to Saxena et al. 
[103], although IR is a crucial factor in the development of T2D and 
metabolic syndrome, the specific pathways connecting these two are not 
well understood. To identify shared genes, LASSO feature selection 
method was utilized to identify metagenes that play a primary role in the 
transition from IR to T2D. They trained LASSO, SVM, XGBoost, RF, and 
ANN ML models on the expression profiles of these genes, with the ANN 
performing the best. Zhang and Wan [104] developed logistic regres-
sion, SVM, XGBoost, RF, and CatBoost ML models to predict IR in chil-
dren aged 6–12 years using ML allowing for early intervention and 
prevention for identified children at risk for developing diabetes and 
cardiovascular disease. Lee et al. [105] focused on chronic kidney dis-
ease and its association with IR, which worsens renal and patient out-
comes considering both macronutrients and micronutrients. They 
employed various ML algorithms, including RF, XGboost, logistic 
regression, and DNN, to predict IR using the measure homeostasis model 
assessment of IR (HOMA-IR). Receiver operating characteristic (ROC) 
curves were compared among the different algorithms, and SHAP values 
were utilized to explain the functioning of the ML models. Ultimately, 
the RF algorithm exhibited the highest area under the ROC curve (AUC) 
and the most significant differentiation in SHAP values. 

Park et al. [106] predicted IR using an ML algorithm. The study was 
conducted on a population-based cohort in Korea, and the results 
showed that the poly-genetic variants belonged to the 15-feature pre-
diction model when environmental factors, including nutrient intake 
and lifestyles, were not included. The study also found that pulse and 
seasons with other medical health-checkup were included in the 9- 
feature model, which can be easily implicated into the smart watch to 
check IR and provide a health-related personal warning daily. Kang et al. 
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[107] presented an ML-derived gut microbiome signature that predicts 
fatty liver disease in the presence of IR. The authors developed an RF 
classifier using fecal 16S rDNA sequencing data from a cohort of 777 
individuals and evaluated its performance using metrics such as accu-
racy, AUC, kappa, and F1-score. The classifier performed better in in-
dividuals with IR and was further optimized using genetic algorithm. 

Abdesselam et al. [108] proposed an ML approach to estimate the 
HOMA-IR cut-off value for identifying individuals at risk of IR in a given 
ethnic group. They used cluster analysis and ML techniques such as the 
k-means clustering algorithm and a self-organizing map (SOM) clus-
tering algorithm to group individuals based on their HOMA-IR values 
and other clinical parameters such as age, gender, and body mass index 
(BMI) to identify the optimal cut-off value for an Omani Arab population 
living in Nizwa. Qazmooz et al. [109] used ML algorithms to identify 
immune, trace element, and opioid biomarkers that can predict athe-
rogenicity and IR indices. The study provides a comprehensive analysis 
of these biomarkers in individuals with unstable angina, which can help 
in the early diagnosis and treatment of cardiovascular disease. Chakra-
dar et al. [110] proposed non-invasive approach to identify IR using ML 
techniques. This approach used triglycerides and HDL-c ratio, along 
with 18 other parameters, to identify IR without the need for invasive 
clinical processes and was validated with a stratified cross-validation 
test and compared with the state-of-art algorithms. Aggarwal [111] 
proposed a joint strategy of ML and DL for identifying IR using non- 
invasive techniques. A novel method for diagnosing HOMA-IR was 
introduced by Hall et al. [112], which utilized ML techniques applied to 
the physical characteristics of patients. By analyzing anthropometric 
patient features, a predictive model was created that can accurately 
diagnose IR. 

3.5. Adherence to insulin treatment 

Thyde et al. [113] explored how ML based on CGM data can be used 
to detect missed once-daily basal insulin injections in T2D patients. They 
evaluated various ML models to identify adherence and explored the 
potential enhancement of performance by combining features derived 
from both expert knowledge and automated learning. The results 
showed that the DL methods (neural networks) outperform the simple 
feature-engineered models for detecting missed insulin injections and 
combining expert-dependent and automatically learned features can 
further improve performance. 

3.6. Hypoglycemia prediction 

Parcerisas et al. [114] proposed a DSS that utilizes ML algorithms to 
predict and prevent nocturnal hypoglycemia in T1D patients who are 
undergoing multiple dose insulin therapy. The study used various data 
sources, optimization metrics, and mitigation measures to design pop-
ulation and personalized models that can be used to improve confidence 
toward self-management of the disease. The personalized models 
showed better performance than population models, indicating that 
individualized approaches to diabetes management may be more 
effective. Dave et al. [115] proposed a feature-based ML model for real- 
time hypoglycemia prediction in T1D patients. Mueller et al. [116] 
applied ML models to identify predictors of hypoglycemia and other 
clinical and economic outcomes among treated people with T2D using 
structured data from a large, geographically diverse administrative 
claims database. 

Elhadd et al. [117] utilized ML techniques to predict metabolic 
outcomes in individuals with T2D who fast during Ramadan. Bosnyak 
et al. [118] developed a predictive model for hypoglycemia risk in pa-
tients T2D using basal insulin treatments. The study utilized advanced 
analytical methods, including ML, to analyze EHR data and identify 
potential subgroups of patients who are at lower risk of hypoglycemia 
when treated with basal insulin compared with another and predict 
hypoglycemia-related cost savings in these subgroups. Seo et al. [119] 

developed and evaluated an easy-to-use, computationally efficient ML 
algorithm to predict postprandial hypoglycemia using unique data- 
driven features derived from the data. 

Oviedo et al. [120] proposed an insulin hypoglycemia reduction 
system based on postprandial hypoglycemia predictions using ML 
techniques. This system aims to improve glycemic control in subjects 
with T1D who use multiple insulin injections and monitor their capillary 
glucose levels. They used several ML algorithms to predict postprandial 
hypoglycemia. The system generates a bolus reduction suggestion as the 
scaled weighted sum of the predictions. 

3.7. Distribution and trends of reviewed works across the categories 

After reviewing the papers in the survey, the preparation of Fig. 5a–e 
to display the distribution and trends of the reviewed works across the 
aforementioned categories is undertaken. 

According to Fig. 5a, the results indicate that 16 % of the reviewed 
works concentrate on C1, which entails insulin dosage calculation and 
the corresponding response. Additionally, 12 % of the papers revolve 
around C4, which pertains to the prediction of insulin resistance. 
Furthermore, 10 % of the reviewed works fall under the scope of C2, 
involving predictions related to blood glucose levels and insulin sensi-
tivity. Finally, 9 % of the papers focus on C7, which encompasses the 
prediction of hypoglycemia. Fig. 5b provides insights into the focus of 
studies on each type of diabetes and their relationship to the eight as-
pects of insulin management. The analysis reveals the distribution of 
research across the various categories and sheds light on the prominence 
of specific diabetes types in each aspect. Fig. 5c–e present an analysis of 
the ML algorithms employed in the respective categories of C1, C2, and 
C7. In the domain of C1, which focuses on insulin dosage calculation and 
response, the most utilized ML models are RF and neural networks. 
Moving on to C2, which involves blood glucose and insulin sensitivity 
prediction, RF and SVM emerge as the predominant ML models. Simi-
larly, RF and SVM are the top ML models employed in C7, which deals 
with hypoglycemia prediction. Tables A1 to A5 in the Appendix section 
are presented to illustrate both the clinical challenges and their corre-
sponding technical solutions derived from the diverse array of studies 
discussed. These tables offer a structured overview of the healthcare 
issues addressed in the respective research, alongside the innovative 
technical approaches employed to tackle them. 

Based on the findings and the detailed information presented in 
Tables A2–A8 in the Appendix, which outline the specific inputs of the 
models, it is evident that studies employing ML in various facets of in-
sulin management often overlook cost-related factors and fail to address 
aspects reflecting insulin affordability or accessibility. The subsequent 
section delves into a thorough examination of the limitations associated 
with these studies, exploring different clinical aspects related to insulin 
affordability and accessibility. Additionally, the subsequent highlights 
potential research opportunities in this domain. 

4. Discussion: limitations and research opportunities 

With regard to market dynamics and research opportunities, the 
global insulin market is anticipated to experience steady growth due to 
factors like increasing diabetes prevalence and advancements in tech-
nologies such as ML and AI. ML applications in insulin management 
encompass continuous glucose monitoring data analysis, insulin dosing 
optimization, and predictive analytics for complications. These appli-
cations leverage various ML techniques to enhance glucose control and 
personalize treatment strategies for individuals with diabetes. ML- 
driven innovations in insulin management, like closed-loop systems, 
present significant market potential. Research endeavors in this domain 
are concentrated on refining glucose control, minimizing hypoglycemia, 
and averting long-term complications, with ML serving a pivotal role in 
predictive modeling and treatment refinement. It’s crucial to address 
integration with healthcare systems and comply with regulatory 
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standards for successful market penetration. Overall, the intersection of 
ML technology and insulin management holds promising prospects for 
innovation, market expansion, and enhanced patient outcomes in dia-
betes care. Although continuous research, collaboration, and investment 
efforts will be instrumental in propelling forward the field of insulin 
therapy and diabetes management, the limitations of the existing 
research should be recognized. In this section, the limitations of studies 
that may have been impactful on the results or contributed to a gap 
between the research and reality are presented. Furthermore, research 
opportunities are discussed for further investigation into the application 
of ML models in order to improve the affordable and effective man-
agement of insulin for diabetes. 

4.1. Limitations 

In the rapidly advancing field of ML applications in insulin man-
agement for diabetes care, it is essential to critically evaluate the limi-
tations that may impact the real-world effectiveness and broader 
adoption. These limitations can be broadly categorized into distinct 
areas, including data-related challenges, modifiable factors such as data- 
related, algorithm design and validation, modifiable factors (insulin 
type, dose, timing, etc.), subject preferences, habits, and therapeutic 
education (meals, physical activity, etc.), and sensor and technology 
limitations. Table 1 is provided to present more details about each 
limitation categories in reviewed papers. Understanding and addressing 
these limitations is crucial for the development and deployment of 
effective ML-based insulin management systems. 

Data related limitations have been tracked down to having limited 
supporting data for building accurate algorithms, errors in patient 
behavior, carbohydrates miscalculations, and sensor readings, erro-
neous, missing, and unavailable data in electronic health record data 
(impacting the reliability and completeness of the dataset), and its need 

Fig. 5. The distribution of the reviewed papers in terms of: (a) the introduced categories, (b) Diabetes’ type, (c) most common ML algorithms in C1, (d) most 
common ML algorithms in C2, and (e) most common ML algorithms in C7. 

Table 1 
Limitations of insulin management.  

Study Limitations 

Data Algorithm 
design & 
validation 

Modifiable 
factors 

Subject 
preferences, 
habits, & 
therapeutic 
education 

Sensor & 
technology 

[58] ˣ ˣ    
[79,80] ˣ     
[77] ˣ     
[63] ˣ     
[53]  ˣ    
[57]  ˣ    
[117]  ˣ    
[121]   ˣ  ˣ 
[122]   ˣ   
[82]   ˣ   
[123]    ˣ  
[124]    ˣ  
[70]    ˣ  
[125]     ˣ  
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for huge case studies, which could include non-relevant information. 
The algorithm design and validation limitation incudes validation of 
models using retrospective data sets, lack of prospective validation of 
technical advances, lack of generalizability in validation techniques. 
Lack of validation in realistic free-living conditions, validation of models 
in simulated environments, small sample sizes in studies, and over-
reliance on in silico evaluations. Limitations of modifiable factors entails 
regular data uploads, potentially disrupting routine clinic visits, 
participant confirmation in meal detection, potentially affecting user 
experience, uncertainty and noise in real-world scenarios, influencing 
blood glucose levels and degrading control algorithms, and challenges in 
the practical clinical application due to variations in variables across 
patient populations. The limitations caused by subject preferences, 
habits, and therapeutic education comprise of inability to model phys-
ical activity, stress, temporal insulin sensitivity factors, and time-based 
carbohydrate-to-insulin ratios, challenges in dealing with interaday 
variability due to temporary events, and dependence on participant 
confirmation for meal detection. And sensor and technology limitations 
are caused by frequent uploading and downloading of data for insulin 
titrations, data sharing and subsequent dose adjustments through online 
or mobile applications, the relatively high cost of CGMs limiting wider 
adoption among diabetic patients, and participant confirmation 
required for meal detection, impacting data accuracy. 

Finally, to date, there have been no studies in the literature that 
specifically employ ML techniques to facilitate recommendations by 
prominent institutions and working groups in order to address the issue 
of high insulin costs, improve affordability, and enhance accessibility 
and provide insights into the economic factors influencing the insulin 
management field of study. 

4.2. Research opportunities 

According to Nature biotechnology (2022) up to 25 % of patients in 
the US are currently rationing their insulin intake, which puts them at 
significant risk of potentially life-threatening complications, the 
importance of affordable access to insulin cannot be overstated. More-
over, the absence of similar alternatives for glucose management, such 
as dietary modifications, weight loss, exercise, and oral anti 

hyperglycemic medications available to those with T2D, exacerbates the 
situation for people with T1D [15]. Fig. 6 provides a schematic repre-
sentation of the barriers to insulin access. 

This section aims to concentrate on the utilization of ML models to 
enhance the accessible and affordable effective insulin treatment, in 
accordance with the recommendations provided by the Endocrine So-
ciety [127,128] and the insulin access and affordability working group 
[10]. Hence, the future research opportunities are categorized into the 
following: 

4.2.1. Insurance coverage type 

4.2.1.1. Clinical aspect. The categorization of patients dependent on 
insulin based on their insurance type plays a vital role in understanding 
how their healthcare coverage influences their access to insulin and 
related supplies [10]. The cost and availability of insulin are signifi-
cantly impacted by insurance coverage, which is a critical aspect of 
diabetes management. Here are some common insurance categories that 
can affect patients dependent on insulin [129]: Medicare (insurance 
program for people 65 or older, Insulin covered under Medicare Part D, 
Insulin covered under Medicare Part B, Insulin out-of-pocket (OOP) cost- 
sharing), Medicaid, private/commercial insurance (State regulated 
health insurance plans, Other private insurance coverage), Uninsured. 
Healthcare costs associated with diabetes are significant, especially 
when it comes to OOP expenses for insulin and patients experience 
varying financial responsibilities based on the type of insurance plan 
they have [4]. As it is demonstrated in Fig. 7, patients who are uninsured 
and those with private insurance face substantial costs in obtaining in-
sulin [130]. 

Additionally, Fig. 8 presents a comparative distribution of in-
dividuals within different healthcare coverage categories in the US 
based on their usage of insulin, categorized as “Insulin users” and “Non- 
Insulin users” [130]. The data is segmented across four coverage types: 
Medicaid, Medicare, Private, and uninsured. Fig. 9 displays the distri-
bution of insulin prescription acquisitions based on coverage type, tak-
ing into account instances of personal expenditure [13]. On the whole, 
63 % of insulin acquisitions involved some form of cost-sharing. Among 
these, 32 % of acquisitions necessitated payments surpassing $35, while 

Fig. 6. Barriers to insulin access encountered at each stage of the WHO’s insulin life cycle framework [11,19,126].  
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20 % demanded payments exceeding $70. Notably, patients covered by 
private insurance and those without insurance were notably more prone 
to encountering cost-sharing requirements compared to other coverage 
categories. In contrast, a majority of Medicaid beneficiaries acquiring 
insulin prescriptions faced no cost-sharing obligations. For Medicare 
patients, 68.5 % experienced out-of-pocket expenses, with 37 % of them 
incurring costs beyond $35 per prescription fill – an inclusive figure that 
encompasses nearly a quarter of individuals who paid over $70 per 
acquisition. Underinsured individuals may encounter higher OOP costs 
in the form of prescription co-pays, co-insurance, or deductibles [15]. In 
contrast, uninsured individuals are solely responsible for bearing the 
entire cost of their insulin [131]. The Inflation Reduction Act limits 
insulin OOP costs for Medicare Part D and Part B plans to $35 per month 
and also reduces overall OOP drug spending within Medicare [12,13]. 

4.2.1.2. Technical aspect. There is insufficient research on leveraging 
insurance variables to enhance ML models’ accuracy and effectiveness in 
improving insulin affordability. Research explores integrating insurance 
data into ML algorithms for cost prediction, treatment outcome analysis, 
risk assessment, and personalized interventions. 

4.2.2. Insulin type selection 

4.2.2.1. Clinical aspect. Insulin analogs have emerged as the dominant 
players in the insulin market, causing some older human insulin prod-
ucts to be phased out [132,133]. According to the Endocrine Society 
[127,128] guidelines, the most cost-effective insulin option that aligns 
with the patient’s specific clinical requirements should be prescribed. 

For individuals with T2D, managing their condition efficiently is 
achievable with the use of lower-priced human insulin such as NPH and 

Fig. 7. Average annual OOP costs for insulin in 2019 [130].  

Medicaid Medicare Private uninsured

Insulin users 12 52 33 2

Non-Insulin users 9 54 32 4
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Fig. 8. Distribution of individuals as insulin and non-insulin users across different healthcare coverage categories [130].  

Fig. 9. Share of insulin prescription fills with cost sharing per fill in 2019, (a) overall, (b) Medicaid, (c) Medicaid, (d) private, and (e) uninsured [13].  
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regular insulin [127,128,132,134,135]. While human insulin continues 
to be a viable alternative for those with T1D, insulin analogs are 
generally considered the preferred treatment for this patient group 
[133]. An investigation has shown that a preference for expensive in-
sulin is more common among higher-ranking physicians and trainees 
may adopt these practices from their senior colleagues [136]. Tran-
sitioning from insulin analogs to human insulin dosage for patients who 
are suitable candidates relies heavily on expert knowledge [135,137]. 
Considering the increasing scarcity of proficient medical practitioners 
capable of adjusting human insulin dosages, the present clinical 
approach falls short in its capacity to deliver the necessary fine-tuning of 
human insulin levels for enhancing diabetes management 
[127,128,136]. 

4.2.2.2. Technical aspect. Thus, ML models can facilitate insulin type 
selection and developing human insulin dosage titration system. These 
models can enhance the comfort of use for insulin selection, which is a 
crucial factor influencing a physician’s choice when prescribing 
affordable insulin [134,136,138]. The study conducted by Mangu and 
Nyayapati [139] is the only known research that partially relates to this 
area. Their study investigates customer satisfaction for insulin brands in 
the Indian market, specifically focusing on service levels and response 
time. They utilize unsupervised ML algorithms and Principal Component 
Analysis (PCA) to identify three significant components influencing 
customer satisfaction: Interaction factor, Personal touch factor, and 
Swiftness factor. 

4.2.3. Biosimilar insulin and market competition 

4.2.3.1. Clinical aspect. The introduction of biosimilar insulin and the 
establishment of interchangeable insulin options play a vital role in 
breaking the barriers of a closed market lacking competition [140]. This 
development is crucial for reducing insulin costs and improving its 
overall affordability [26,127,128,141–145]. According to the ASPE 
[130], the principal advisor to the Secretary of the US Department of 
Health and Human Services (HHS) on policy development, the extent of 
these potential cost savings relies on the establishment of a competitive 
landscape for each insulin product, which encompasses factors such as 
the speed and number of biosimilar competitors entering the market for 
each insulin type. 

4.2.3.2. Technical aspect. The exploration of utilizing ML models to 
predict market competition arising from biosimilar insulins and 
magnitude of future saving, short and long-term cost benefits, and 
substitution allowances represents a crucial avenue for future research 
and present significant implications for policymakers, potentially 
prompting them to consider adjusting the approval process for bio-
similar insulin products [130,146]. 

4.2.4. Mental health issues 
The issue of insulin insecurity, characterized by significant disrup-

tions in access, has brought forth another serious concern: psychological 
distress [15,147]. This potential development of mental health condi-
tions, such as loss of sleep, high levels of anxiety and stress, depression 
and even post-traumatic stress disorder (PTSD) can cause blood glucose 
levels fluctuations [15,147]. 

4.2.4.1. Technical aspect. In addressing this complex issue ML can serve 
as a powerful computational tool to enhance our understanding of the 
emotional and behavioral aspects of PTSD. By analyzing large datasets 
of patient information, ML models can learn general rules and patterns, 
aiding in the development of accurate diagnostic classification models 
for identifying individuals with PTSD resulting from the high cost of 
insulin, insulin rationing, and the financial hardships associated with 
obtaining insulin for diabetes patients. 

4.2.5. Insulin delivery selection 

4.2.5.1. Clinical aspect. To choose the appropriate type of insulin and 
administer it correctly, it is important to have knowledge about the 
onset and duration of its effects, the timing of doses, and the method of 
delivery [148,149]. The effectiveness and safety of insulin therapy have 
been enhanced by advancements in insulin delivery and blood glucose 
monitoring technologies [150]. These advancements include the tran-
sition from vials and glass syringes to insulin pens and pumps, as well as 
the shift from traditional self-monitoring of blood glucose with lancets 
and test strips to CGM systems, real-time CGM systems, and flash glucose 
monitoring systems [150]. In September 2016, the FDA granted 
approval for AP systems, which enable automated adjustments of basal 
insulin infusion rates and/or bolus corrections based on CGM readings 
similar to physiological insulin delivery [150]. These devices contribute 
to the enhancement of glucose control, the reduction of glucose vari-
ability, and the occurrence of hypoglycemia less frequently 
[23,151,152]. To guarantee affordability, it is crucial to take into ac-
count all the necessary components of insulin therapy [4,148,153]. 

4.2.5.2. Technical aspect. Conducting future research to match patients 
with different insurance coverage to the appropriate delivery system 
would be a valuable endeavor [23,154]. By analyzing large datasets and 
using ML algorithms, patterns and correlations between insurance 
coverage and the most cost-effective insulin delivery systems for 
different patient profiles can be identified. 

4.2.6. Cost-related suboptimal insulin use and adherence 

4.2.6.1. Clinical aspect. Insulin’s increasing financial pressures and 
barriers have led to the emergence of risky compensatory behaviors 
(such as rationing), personal or financial sacrifices, and the adoption of 
unconventional approaches (like trading) [155]. Insufficient access to 
appropriate healthcare, insufficient awareness of the repercussions of 
noncompliance, and financial constraints are the main factors leading to 
rationing of insulin among diabetes patients [156,157]. The following 
questions can be used to gauge cost-related insulin underuse [158]: (1) 
Did you consume less insulin than prescribed? (2) Did you attempt to 
stretch out your insulin supply? (3) Did you take smaller doses of insulin 
than prescribed? (4) Did you discontinue the use of insulin? (5) Did you 
not fill an insulin prescription? (6) Did you not initiate insulin treat-
ment? The high OOP costs and cost sharing associated with insulin lead 
to individuals sacrificing other essential needs, engaging in rationing 
behaviors by taking less than the prescribed amounts of insulin, creating 
barriers to prescription satisfaction, adherence, and affordability 
[130,149,152,159,160]. 

4.2.6.2. Technical aspect. First research topic is utilizing ML techniques 
to analyze healthcare data, patient demographics (especially income 
and insurance coverage), and socioeconomic factors to identify patterns 
and predict the prevalence of cost-related insulin underuse and cata-
strophic spending among diabetes patients in primary care settings 
[161]. The goal would be to provide healthcare providers with early 
identification of patients at risk of cost-related insulin underuse, 
enabling targeted interventions and support to mitigate the impact of 
financial barriers on insulin therapy adherence. On the other hand, In-
sulin affordability is closely linked to adequate housing and food secu-
rity, prioritized by federal agencies like HHS and US Department of 
Agriculture (USDA). Housing instability and challenges in paying utili-
ties can compromise the quality of insulin due to the need for refriger-
ated storage. Additionally, food insecurity, which hampers access to 
consistent and appropriate dietary intake, poses health risks for in-
dividuals on insulin regimens [130,162]. Therefore, another research 
topic is exploring the relationship between housing and food insecurity 
and their impact on insulin affordability and management. The aim of 
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the proposed model is to develop predictive models that analyze data on 
housing instability, utilities payment challenges, and food insecurity to 
identify individuals at higher risk of compromised insulin quality and 
suboptimal dietary adherence. 

4.2.7. Patient cost-sharing program selection 

4.2.7.1. Clinical aspect. Multiple initiatives are underway to alleviate 
the impact of high OOP spending. These include the Inflation Reduction 
Act [130], the involvement of insurers, Pharmacy Benefit Managers 
(PBMs), and manufactures [130] by offering pre deductible coverage 
where patients receive coverage at no cost [152], patient assistance 
programs [127,128,130], drug discount programs (copay cards, savings 
programs) [163], and the availability of pricing databases like goodrx. 
com, blinkhealth.com, and costplusdrugs.com [8]. Fig. 10 illustrates 
the variety of alternatives and their eligibility of manufacturer- 
sponsored programs aimed at reducing insulin cost sharing. 

However, the effectiveness of patient assistance programs in 
enhancing insulin accessibility remains uncertain, as there are concerns 
regarding the lack of transparency in eligibility requirements, compli-
cated application and renewal processes, and potential limitations to 
specific brands and treatments [127,128]. These requirements differ 
among companies, and the annual application process can pose chal-
lenges as patient assistance programs can be complex to navigate 
[127,128]. Moreover, there are concerns about the underutilization of 
patient access programs provided by the three major insulin manufac-
turers in the US [164]. 

4.2.7.2. Technical aspect. Thus, ML techniques can be developed as a 
model that maps patients to their most suitable cost sharing program, 
considering eligibility requirements, application processes, brand limi-
tations, and treatment preferences. By analyzing data on patient char-
acteristics, medical history, and financial factors, the model will provide 
personalized recommendations, improving transparency, accessibility, 
and utilization of patient assistance programs. 

5. Conclusion 

This comprehensive review explores the potential of ML in insulin 

management, covering various aspects targeted solutions for managing 
diabetes, encompassing early detection, predictive analytics, personal-
ized treatment plans, continuous glucose monitoring, optimized insulin 
dosing, behavioral coaching, remote monitoring, telemedicine, and risk 
assessment for complications. Implementing ML in these domains en-
ables healthcare providers to enhance patient outcomes and alleviate 
the impact of diabetes on individuals and healthcare systems, leading to 
improved outcomes and cost-effective approaches. However, it is crucial 
to acknowledge the limitations of the existing literature and address the 
research gaps to advance the field further. In the future, AI and ML are 
expected to revolutionize diabetes management with personalized 
medicine, predictive analytics, advanced closed-loop systems, remote 
monitoring, healthcare automation, improved diagnostics, behavioral 
support, as well as insurance coverage, selection of insulin types, bio-
similar insulin utilization, mental health considerations, and patient 
cost-sharing programs. Additionally, optimizing insulin delivery options 
and addressing suboptimal insulin use and adherence can contribute to 
more accessible and affordable insulin management practices. By envi-
sioning an improved and cost-effective insulin management system, this 
review aims to pave the way for transformative solutions in diabetes 
care. Embracing the potential of ML and incorporating it into clinical 
practice can revolutionize insulin management, ensuring that patients 
have access to the life-saving treatment they require while mitigating 
the financial burdens associated with it. 

CRediT authorship contribution statement 

Maryam Eghbali-Zarch: Writing – original draft, Visualization, 
Validation, Investigation, Conceptualization. Sara Masoud: Writing – 
review & editing, Supervision, Methodology, Investigation, 
Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.  

Appendix A  

Table A1 
Review papers on the application of AI and ML in diabetes management.  

Study Provided overview Categorizing point 

Afsaneh et al. [39] Applications of ML and deep learning (DL) models in the prediction, diagnosis, and management of diabetes Prediction, diagnosis, and management 
of diabetes 

Chaki et al. [40] Techniques and advancements in the field of diabetes detection, diagnosis, and self-management using ML and 
AI 

Prediction, diagnosis, and management 
of diabetes 

Nomura et al. [37] Potential of AI and ML in the field of diabetes management and prediction Prediction, and management of diabetes 

(continued on next page) 

Fig. 10. Varieties and eligibility criteria of manufacturer-sponsored programs 
aimed at reducing insulin cost sharing [163]. 
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Table A1 (continued ) 

Study Provided overview Categorizing point 

Gautier et al. [41] Potential of AI in understanding and managing diabetes including AI and understanding risk factors; AI and 
improving diagnosis; AI and understanding diabetes pathophysiology; AI and understanding the natural history 
of diabetes; and AI and managing diabetes 

Prediction, diagnosis, and management 
of diabetes 

Broome et al. [42] Policy implications of AI and ML in diabetes management Management of diabetes 
Fatima and Pasha 

[43] 
ML algorithms for disease diagnostic, emphasizing the importance of computer aided diagnosis in medical 
imaging and the need for accurate diagnostic systems to avoid misleading medical treatments 

Diagnosis of diabetes 

Donsa et al. [44] Personalization of diabetes therapy using computerized DSS and ML Management of diabetes 
Burnside et al. [45] AI and ML in optimizing insulin dosing strategies and developing personalized prediction tools Optimize insulin usage/delivery 
Thomsen et al. [46] ML methods used for basal insulin dose guidance supporting titration of people with T2D Optimize insulin usage/delivery 
Vettoretti et al. [47] AI methodologies and CGM sensor utilization for decision support in advanced T1D management Optimize insulin usage/delivery 
Forlenza [48] AI and automated decision support to improve diabetes outcomes using multiple daily injections therapy Optimize insulin usage/delivery 
Makroum et al. [49] Potential of ML and smart devices in managing diabetes and predicting postprandial glycemic status and 

adapting the delivery of insulin bolus 
Predicting glucose levels 
Optimize insulin usage/delivery 

Dankwa-Mullan et al. 
[50] 

AI-powered tools and technologies, such as automated retinal screening, patient self-management tools, 
glucose sensors, and insulin pumps 

Predicting glucose levels 
Optimize insulin usage/delivery 

Li et al. [51] AI in diabetes education and management Education 
Zale and 

Mathioudakis [52] 
Clinical evidence for the role of ML models in predicting hospitalized patients’ glucose trajectory Predicting glucose levels 

Alhaddad et al. [53] ML algorithms in non-invasive blood glucose monitoring using wearable sensors Predicting glucose levels 
Mujahid et al. [56] ML techniques for hypoglycemia prediction in diabetic patients Predicting hypoglycemia 
Tyler and Jacobs [57] Computational and AI based decision support systems (DSSs) for managing T1D Predicting hypoglycemia 

Optimize insulin usage/delivery 
Ellahham [58] AI in revolutionizing the diagnosis and management of diabetes Diagnosis and management of diabetes 

Predicting diabetes complications 
Kavakiotis et al. [59] How ML and data mining techniques have been used in predicting and diagnosing diabetes, studying diabetic 

complications, exploring the genetic background and environment of the disease, and improving healthcare 
and management for diabetes patients 

Prediction, and diagnosis of diabetes 
Predicting diabetes complications 

Abhari et al. [60] Use of various AI techniques, and how they in T2D care including disease probability prediction, screening, 
diagnosis, treatment guidance, and complication management 

Utilizing various ML techniques /AI tools 
in diabetes research. 

Singla et al. [61] ML and AI in the management of chronic diseases, specifically diabetes Utilizing various ML techniques /AI tools 
in diabetes research. 

Indoria and Rathore 
[62] 

ML techniques in the classification of diabetes and cardiovascular diseases Utilizing various ML techniques /AI tools 
in diabetes research. 

Rigla et al. [63] Transformation of diabetes management with the addition of CGM and insulin pump data Utilizing various ML techniques /AI tools 
in diabetes research.   

Table A2 
Separation of C1 category into clinical issues and their respective technical solutions.  

Clinical issues Technical solutions 

Difficulty in achieving precise glycemic control with standard methods, varying 
patient responses to insulin treatment. 

Developing nonlinear models using techniques like LASSO, RF, and Gradient Boosting Trees 
considering blood glucose dynamics and relevant features for insulin injection modeling to 
enhance glycemic control. 

Limitations in blood glycemic control with formulaic and closed-loop methods and 
achieving stable blood glucose levels within desired ranges. 

Implementing RL models for personalized insulin care policies integrating individualized 
health reward functions into the model, allowing dynamic adaptation to change in the 
patient’s environment. 

Existing costly and limited in accessibility of insulin delivery systems. Developing an IoT-based insulin delivery system with ML algorithms to automate insulin drug 
delivery. 

Challenges in estimating insulin requirements for hospitalized patients. Applying ML approaches for precise estimation of insulin requirements, training models on 
HER data to forecast inpatient total daily insulin doses more accurately than conventional 
guidelines. 

Difficulty in accurately predicting a patient’s insulin dose, affecting overall glycemic 
management causing hypo/hyperglycemic episodes. 

Utilizing ML models like RNN and ANN for insulin dose prediction, training models on patient 
data to predict optimal insulin doses based on various parameters. 

Difficulty in determining optimal insulin dosage, lacking adaptability to inter- and 
intra-patient variability in insulin needs leading to suboptimal glucose control. 

Developing automated insulin delivery systems using ML to adaptively manage insulin 
delivery and insulin dosage titration 

Variability in individual responses to rapid-acting insulin after meals. Developing ML-based systems for automated meal detection and carbohydrate content 
estimation and utilizing algorithms to analyze real-time data and adjust insulin delivery based 
on meal-related information. 

Inconsistent postprandial glucose control leading to fluctuations in blood sugar levels 
(hyperglycemia or hypoglycemia), impacting overall glycemic management. 

Applying ML approaches such as clustering algorithms to identify distinct patient classes based 
on insulin responses.   

Table A3 
Separation of C2 category into clinical issues and their respective technical solutions.  

Clinical issues Technical solutions 

Difficulty in predicting self-care behaviors and achieving glycemic control Utilization of supervised ML algorithms to predict self-care behaviors and glycemic 
control based on patient features. 

Challenges in accurately forecasting glucose levels while considering limitations in 
resource consumption. 

Assessment of ML-based prediction methods to improve accuracy and manage resource 
consumption in glucose forecasting. 

(continued on next page) 
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Table A3 (continued ) 

Clinical issues Technical solutions 

Understanding the influence of various nutritional factors on short and middle-term 
blood glucose levels. 

Investigation through ML methods to analyze the impact of carbohydrates, proteins, 
lipids, fibers, and energy intake on predicting blood glucose levels. 

Difficulty in accurately predicting blood glucose levels and insulin sensitivity for 
personalized glycemic control and Challenges in predicting longitudinal alteration in 
glycemic control 

Implementation of explainable AI methodologies to study the impact of specific input 
features like pre-prandial blood glucose values, insulin dosage, and meal-related 
nutritional factors on blood glucose prediction and insulin sensitivity. 
Development of a mixed-effect ML framework that effectively utilizes temporal 
heterogeneous, sparse, and varying-length patient characteristics in predicting 
longitudinal alteration in glycemic control. 

Understanding the overall condition of blood glucose regulation in T2D patients 
receiving outpatient care. 

Exploration of combining an EN with ML algorithms to improve the prediction of diabetic 
blood glucose control.   

Table A4 
Separation of C3 category into clinical issues and their respective technical solutions.  

Clinical issues Technical solutions 

Identifying key determinants for commencing insulin therapy in 
individuals with T2D 

Utilization of transparent ML techniques (e.g., Logic Learning Machine - LLM) to discern crucial factors like 
elevated HbA1c levels, prolonged disease duration, and cardiovascular history, aiding in accurate prediction of 
insulin initiation. 

Predicting the factors leading to the adoption of insulin pumps 
among T2D patients 

Employing ML algorithms to identify significant predictors such as age, gender, presence of comorbidities, and 
medication regimens, providing insights into the factors driving insulin pump initiation in T2D cohorts. 

Assessing the efficacy of ML models in determining the initiation of 
insulin treatment by diabetes specialists 

Evaluating ML models’ predictive performance, where algorithms trained on specialists’ judgments’ database 
are compared against non-specialists’ decisions during initial consultations, offering insights into the predictive 
capabilities of ML in guiding treatment initiation decisions for T2D individuals.   

Table A5 
Separation of C5 category into clinical issues and their respective technical solutions.  

Clinical issues Technical solutions 

Detection of missed once-daily basal insulin 
injections in T2D patients. 

Applying ML algorithms based on CGM data used to identify adherence to basal insulin injections considering the combination 
of expert-dependent and automatically learned features.   

Table A6 
Separation of C6 category into clinical issues and their respective technical solutions.  

Clinical issues Technical solutions 

Predicting and preventing nocturnal hypoglycemia in T1D patients 
undergoing multiple dose insulin therapy. 

Utilizing ML algorithms for prediction and prevention of nocturnal hypoglycemia; Population and 
personalized models designed with various data sources, optimization metrics, and mitigation measures. 

Real-time hypoglycemia prediction in T1D patients. Employing feature-based ML models for real-time hypoglycemia prediction. 
Identifying predictors of hypoglycemia and other outcomes in 

treated people with T2D. 
Applying ML models to analyze structured data from a large administrative claims database to identify 
predictors of hypoglycemia and other clinical and economic outcomes in T2D patients. 

Predicting metabolic outcomes in individuals with T2D during 
Ramadan. 

Utilizing ML models to predict metabolic outcomes in T2D individuals fasting during Ramadan. 

Developing a predictive model for hypoglycemia risk in T2D 
patients using basal insulin treatments. 

developing a predictive model using advanced analytical methods, including ML, to analyze EHR data and 
identify subgroups at lower risk of hypoglycemia with basal insulin treatments and predict cost savings. 

Predicting postprandial hypoglycemia. Applying efficient ML algorithm for predicting postprandial hypoglycemia using unique data-driven features 
derived from the data. 

Developing an insulin hypoglycemia reduction system for T1D 
patients. 

Using ML algorithms to predict hypoglycemia and generates bolus reduction suggestions for subjects with T1D 
undergoing multiple insulin injections and monitoring capillary glucose levels.   

Table A7 
A summary of the reviewed papers of C1 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Daskalaki et al. 
[86] 

T1D AC learning Patient-specific parameters Personalized insulin infusion rate 
for each patient 

Time spent in hypoglycaemia: 0.27 % 
95.66 %: with meal uncertainty 
93.02 %: with meal uncertainty and 
insulin sensitivity 

Malmasi et al. 
[85] 

– SVM, LR, and Naïve 
Bayes 

Sentence-level Information Determining the presence/ 
absence of a patient refusing 
insulin 

RNNs achieved the highest accuracy ML 
techniques 
Manually designed rule-based system on 

(continued on next page) 

M. Eghbali-Zarch and S. Masoud                                                                                                                                                                                                            

Downloaded for Anonymous User (n/a) at Wayne State University from ClinicalKey.com by Elsevier on June 29, 
2024. For personal use only. No other uses without permission. Copyright ©2024. Elsevier Inc. All rights reserved.



Artificial Intelligence In Medicine 151 (2024) 102868

15

Table A7 (continued ) 

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Canary platform reached the highest 
accuracy. 

Mosquera- 
Lopez et al. 
[70] 

T1D ANN CGM data for detecting meals and 
carbohydrate estimates 

Insulin dosing recommendations Sensitivity (sens): 83.3 % 
False discovery rate: 16.6 % 
Mean detection time: 25.9 min 

Jemima 
Jebaseeli 
et al. [76] 

T1D CatBoost Patient-specific parameters Predicting the glucose to 
recommend the insulin dosage 

An average accuracy: 98.79 % 
Sensitivity: 99.83 % 
Specificity (spec): 99.59 % 

Coales et al. 
[72] 

T1D Two step clustering Clinical and biochemical 
characteristics 

Categorize individuals within 
diabetes into subcategories 

Low serum patients after subcutaneous 
injection may be associated with 
increased insulin resistance 

Indragandhi 
et al. [78] 

– Decision tree, LR, and 
RF 

Information from mobile app and 
hardware (infusion pump system) 

Amount of insulin to be supplied Linear regression results are better than 
Decision tree and RF algorithm 

Gupta and 
Jiwani [73] 

– RNN, LSTM, ANN Patient-specific parameters Prediction of the patient’s future 
insulin levels 

Accurately predict the patient’s future 
insulin levels 

Peiró [81] T1D – glycemia, time in range %, above 
range%, below range %, 
hypoglycemia%, high glucose blood 
index and low glucose blood index 

Insulin infusion rate Compared to multiple daily injections 
therapy, the hybrid closed-loop AP system 
reduces: 
-Periods above and below ranges by 70.7 
% and 67.2 % 
-Hypoglycemia by 91.2 % (HGBI by 67 % 
and -LGBI by 73.8 %) 

Noaro et al. 
(2021) 

T1D LASSO, RF, and GBT Patient-specific parameters Estimated IB dose RF and GBT models outperformed the 
linear LASSO. GBT’s RMSE: 0.98 U and 
RF’s RMSE: 1.11 U. 

Liu et al. [84] T1D & 
T2D 

SVM and RF Patient-specific parameters Glucose and the amount of insulin 
ordered in the next 24 h 

Predictions of average daily glucose levels 
(Mean Absolute Error (MAE) 21 mg/dL, 
R2 0.4) and whether glucose levels will be 
higher than the clinically desired range in 
the next day (sens 0.73, spec 0.79) 

Levy-Loboda 
et al. [75] 

T1D Decision tree, RF, SVM, 
KNN, and TPF 

Physiological and demographic 
characteristics, insulin pump and its 
paired CGM 

Whether or not an insulin dose 
manipulation has occurred 

Overdose is easier to detect than 
underdoes, and the adult vs. pediatric 
model performs better in detecting 
overdose compared to other granularity 
models. 

Fujihara et al. 
[101] 

T2D LR and ANN Patient-specific parameters Whether to initiate insulin AUCs, accuracy, and recall of logistic 
regression were higher 

Nguyen et al. 
[77] 

T1D & 
T2D 

SuperLearner (an 
ensemble consisting of 
regularized regression, 
RF, and GBT) 

Patient-specific parameters, 
insurance status, creatinine, diet, 
counts of microbiology lab orders, 
and amount of glucocorticoid use 
within the previous 48 h 

1) Whether a patient will require 
>6 units of total daily dose of 
insulin, and 2) a point-value for 
insulin dose is predicted 

An area under the ROC: 0.85 
Area under the precision-recall curve: 
0.65 

Noaro et al. 
[79,80] 

T1D MLR and LASSO Glucose rate-of-change, 
Carbohydrate intake, Insulin on 
board, Carbohydrate ratio, Mealtime 
insulin bolus calculated by the 
standard formula 

Calculated mealtime insulin 
bolus 

The LASSO regression with an extended 
feature-set produced the best results. 

Guzman 
Gómez et al. 
[82] 

T1D ANN, 
Bayesian networks, 
SVM, and RF 

clinical variables Estimated basal insulin dose for 
each of the 24 h in a day 

RF can be effectively utilized to predict 
the basal insulin dose 

de Farias and 
Bessa [74] 

T1D ANN Blood glucose concentration, 
excluding non-measurable variables 
related to insulin dynamics and 
glucose metabolism, and food intake 

Insulin dosage to be administered Effective in handling inter- and 
intrapatient variability and regulating 
insulin infusion without requiring 
information about food intake. 

Chen et al. 
[71] 

T2D XGBoost, SVM, neural 
network, LR, LASSO, 
and RF 

Patient-specific parameters Insulin titration dosage The XGBoost algorithm showed consistent 
and superior performance with an RMSE 
of 1.30 U and Spearman’s correlation 
coefficient of 0.982. 

Annuzzi et al. 
[89] 

T1D Feed-Forward Neural 
Network 

Glycemic values, insulin bolus, 
carbohydrates, proteins, fibers, 
lipids, energy 

Postprandial blood glucose values 
at 15, 30, 45, and 60 min 

Information about nutritional 
factors can be significant for middle-term 
postprandial blood glucose level 
predictions   

Table A8 
A summary of the reviewed papers of C2 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Ngufor et al. 
[97] 

T2D Longitudinal supervised 
learning: mixed-effect 

Baseline patient characteristics, current 
HbA1c, and medication use. 

Predict longitudinal change 
inHbA1c measured one, two, 

predicting glycemic change at the 1st, 
2nd, 3rd, and 4th 
clinical visits in advanced was 1.04, 1.08, 

(continued on next page) 
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Table A8 (continued ) 

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

machine learning 
approach 

three, and four encounters in 
the future 

1.11, and 1.14 times that of the gradient 
boosted model 

Xie and Wang 
[95] 

T1D SVM, RF Regression, 
GBR, MLPR, LSTM, and 
TCN 

Physiological data, life-event data 
reported, and glucose measurements 

Predicted blood glucose level 
for a given time step 

DL models, vanilla LSTM network and 
TCN, performed better. 

Wang et al. 
[94] 

T2D EN, RF, SVM, and back 
propagation ANN 

Basic information, biochemical indices, 
and diabetes-related data 

Simulate and predict blood 
glucose status 

The EN and ML models had higher sens 
and accuracy than the logistic regression 
models. 

Rodríguez- 
Rodríguez 
et al. [98] 

T1D ARIMA, RF, and SVM Historical glucose measurements form 
the FGM sensor 

Predicted glucose level at a 
future time point 

Monitoring interstitial glucose data for a 
brief duration and employing a reduced 
sampling frequency result precise short- 
term predictions. 

Kurdi et al. 
[87] 

T1D Multivariable LR, RF, 
KNN 

Baseline HbA1c, CGM, carbohydrates, 
recommended insulin bolus dose, and sex 

Meeting glycemic control of 
HbA1c <7.5 % 

RF model showing better calibration. 

Zafar et al. 
[88] 

– KNN, RF, LSTM, SVM, 
XGBoost 

– Predicting glucose profiles LSTM’s MAE: 2.50 mg/dL, ARIMA’s 
MAE: 4.94 mg/dL, LSTM’s RMSE: 3.7 
mg/dL, ARIMA’s RMSE: 7.67 mg/dL 

Tarumi et al. 
[91] 

T2D SVM, and LR Age, gender, laboratory tests (HbA1c, 
sodium, low-density lipoprotein (LDL), 
total protein, fasting glucose, 
triglycerides, estimated glomerular 
filtration rate (eGFR), vital signs (body 
weight, systolic blood pressure, diastolic 
blood pressure) 

Likelihood of reaching a 
treatment target, such as 
achieving control of HbA1c to 
<7.0 %, within a three-month 
timeframe. 

Models using WA and CD achieved 
higher prediction performance. 

Miller et al. 
[93] 

T1D ARMA, LSTM, Static 
simulator and DTD-Sim 

CGM data, insulin pump data, meal logs, 
and activity data 

Forecasted blood glucose 
levels 

AR and LSTM models are less sensitive to 
bolus doses and full meals. LSTM model 
is influenced by a large meal but not a 
bolus insulin dose. DTD-sim model is 
sensitive to bolus insulin and meals, but 
more stable than the static simulator. 

Nagaraj et al. 
[165] 

T2D EN regularization-based 
generalized linear model, 
SVM, RF 

Patient-specific parameters Predicted HbA1c responses EN regularization-based generalized 
linear model is better. 

Benyó et al. 
[96] 

– DNN based methods, 
specifically classification 
DNN and Mixture 
Density Network 

insulin sensitivity at time t the predicted SI(t + 1) value, 
which represents the insulin 
sensitivity at the next time 
step 

The DNN-based methods’ prediction 
accuracy was the same or better than the 
currently used stochastic model. 

Szabó et al. 
[92] 

– Two neural networks: 
classification deep 
network and mixture 
density network 

Demographic information, and clinical 
variables 

Predicted insulin sensitivity 
of the patients 

Sex-specific models can enhance insulin 
sensitivity prediction. 
All AI-based prediction models 
outperformed the currently used 1D 
prediction method.   

Table A9 
A summary of the reviewed papers of C3 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Hankosky 
et al. [100] 

T2D Conditional logistic 
regression and penalized 
conditional logistic 
regression 

Demographic characteristics, 
clinical, medication-use, healthcare 
resource utilization related variables 

Main factors associated 
with insulin pump 
initiation 

Consistent predictors of insulin pump initiation 
included CGM use, visiting an endocrinologist, 
acute metabolic complications, higher count of 
HbA1c tests, lower age, and fewer diabetes-related 
medication classes 

Musacchio 
et al. [99] 

T2D Logic learning machine Demographic factors, such as age, 
sex, BMI, HbA1c levels, duration of 
diabetes, and history of 
cardiovascular disease 

Whether or not a 
patient would initiate 
insulin therapy within 
one year 

Accuracy: 0.87 
Sens: 0.76 
Spec: 0.78 
Precision of 0.91 

Fujihara 
et al. [101] 

T2D Logistic regression and 
neural network 

Patient-specific parameters Whether to initiate 
insulin therapy 

AUCs, accuracy, and recall of logistic regression 
were higher.   

Table A10 
A summary of the reviewed papers of C5 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Thyde et al. 
[113] 

T2D CNN, logistic regression, and 
multilayer perceptron 

CGM 
data 

Whether a patient is adherent or non- 
adherent to their insulin regimen 

Mean accuracy based on learned features: 79.7 % 
Mean accuracies based on expert-engineered and 
learned features: 79.7 % and 79.8 %  
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Table A11 
A summary of the reviewed papers of C6 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Ogunyemi and 
Kermah 
[166] 

T2D RUSBoost and adaptive 
boosting (AdaBoost).M1 

Patient data, including 
demographic information, 
medical history, and eye exam 
results 

A prediction of whether 
or not the patient has 
diabetic retinopathy 

Accuracy:73.5 % 
Sens: 69.2 % 
Spec: 55.9 % 
AUC: 0.72 

Bader Alazzam 
et al. [167] 

T1D & 
T2D 

Optimum-Path Forest 
and the Restricted 
Boltzmann Machine 

Retinal images obtained from 
patients suspected of having 
diabetic retinopathy. 

Classified the images as 
either having DR or not 

RBM-1000 model had the best overall performance 
(accuracy: 89.5 %), RBM-500 model was superior in 
the automatic detection of signs of DR (sens: 100 %) 

Tsao et al. 
[168] 

T2D Decision trees, SVM 
logistic regression, and 
ANN 

Patient-specific parameters Predict the presence or 
absence of diabetic 
retinopathy 

SVM model achieved the best prediction 
performance 
AUC: 0.839 
Accuracy: 0.795 
Sens: 0.933 
Spec: 0.724   

Table A12 
A summary of the reviewed papers of C8 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Sevil 
et al. 
[169] 

– KNN, SVM, naive Bayes, decision tree, 
ANN, linear discrimination, ensemble 
learning, and DL with LSTM 

Reconciled signals include time-domain features, 
frequency-domain features, and statistical features (e. 
g. mean, standard deviation, skewness, kurtosis, 
energy, entropy, and spectral centroid) 

Classification of physical 
states and the estimation of 
energy expenditure 

LSTM-DL’s accuracy: 
94.8 % 
Ensemble learning 
algorithm’s 
accuracy: 93.2 %.   

Table A13 
A summary of the reviewed papers of C7 category.  

Study Type of 
diabetes 

ML algorithm(s) Input(s) Output(s) Finding(s) 

Seo et al. 
[119] 

T1D & 
T2D 

RF, SVM-LN or SVM- 
RBF, KNN, and logistic 
regression 

glucose dynamics data collected during 
daytime and nighttime activities including 
CGM data, rate of increase of glucose, and 
glucose rate of change 

Binary classification of hypoglycemia 
or non-hypoglycemia 

The best-performing model was 
the SVM-RBF (AUC of 0.89 and F1 
score of 0.70) 

Mueller 
et al. 
[116] 

T2D Hypothesis-free, 
Bayesian ML analytics 
platform (GNS 
Healthcare REFSTM: 
Reverse Engineering 
and Forward 
Simulation) 

Patients’ medical, prescription drug, 
laboratory, and eligibility information (e. 
g., medical claims, pharmacy claims, 
laboratory data) 

Predicted patients at high risk, who 
accounted for a significant proportion 
of hypoglycemic events 

Comorbid conditions, prior 
hypoglycemia, anemia, insulin 
use, and sulfonylurea use were 
identified as risk factors for 
hypoglycemia. 
(ML model’s AUC: 0.77) 

Parcerisas 
et al. 
[114] 

T1D ANN, multinomial 
naïve Bayes, AdaBoost, 
SVM, LDA, and LSTM 

CGM data, interstitial glucose 
concentrations, meal estimations, IB doses, 
and self-monitoring blood glucose 
measurements; data from the wristband 
including heart rate signal, steps 
performed, estimation of calories burned, 
and sleeping period 

Prediction of nocturnal hypoglycemia 
events 

The LSTM algorithm 
outperformed other algorithms in 
terms of accuracy, sens, and spec. 

Dave et al. 
[115] 

T1D RF and Gradient 
Boosting 

CGM data Whether a patient is at risk of 
experiencing hypoglycemia 

RF’s sens: 91 % 
False positive rate: 8–10 %. 

Elhadd et al. 
[117] 

T2D LR, RF, SVM, XGBoost, 
and DL 

Physical activity data (mean and standard 
deviation of physical activity), time- 
related features (hour of the day, day of the 
week, part of the day), a binary indicator 
for Ramadan vs. non-Ramadan day, 
demographic information, and medication 
information from EHR 

1) A binary classification (e.g., 
predicting whether a patient will 
experience hypoglycemia or not), 2) 
continuous value prediction (e.g., 
predicting the blood glucose level) 

The best performing model was 
the XGBoost model (R2: 0.837, 
MAE: 17.47)   
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Table A14 
Dataset utilization across reviewed studies.  

Study Used dataset 

Daskalaki et al. [86] 1) A virtual patient cohort generated by the UVA/Padova T1D simulator, which consisted of 100 adult patients, 2) a clinical dataset consisting of 20 
T1D patients who were treated with insulin pump therapy. 

Ngufor et al. [97] OptumLabs Data Warehouse (OLDW) which is a large administrative claims database of commercially-insured and Medicare advantage beneficiaries 
across the US. 

Mosquera-Lopez et al. [70] 1) An in silico dataset obtained from validated T1D simulators, 2) a real-world large dataset from 150 closed-loop participants from the Tidepool big 
data donation program. 

Ogunyemi and Kermah 
[166] 

Clinical data from urban safety net clinics and public health data from the Centers for Disease Control and Prevention’s National Health and Nutrition 
Examination Survey (NHANES) consisting class imbalance. 

Bader Alazzam et al. [167] 73 patients (122 eyes) who were suspected of DR and underwent ophthalmological examination and retinal scans. 
Jemima Jebaseeli et al. [76] Dataset of insulin drug analysis - STARR (STAnford Research Repository) 
Sevil et al. [169] Collected data from a multi-sensor wristband during five different physical states, including resting, activities of daily living, running, biking, and 

resistance training of 25 subjects (12 male and13 female) who participated in a subset of the physical activities during the experiments. 
Coales et al. [72] Two previously published randomized controlled trials (RCTs) to apply their ML approach. The RCTs were registered on clinicaltrials.gov with the 

registration numbers NCT02595658 and ISRCTN40811115. 
Xie and Wang [95] OhioT1DM dataset, which was released under a Data Use Agreement (DUA no. D201804) between Ohio University and Pennsylvania State University. 
Seo et al. [119] Retrospective CGM data from 104 people who had experienced at least one hypoglycemia alert value during a three-day CGM session using the 

Samsung Medical Center. 
Indragandhi et al. [78] University of California, Irvine ML repository 
Gupta and Jiwani [73] UCI repository dataset, which is publicly available at https://archive.ics.uci.edu/ml/datasets/diabetes containing two types of diabetes patient 

records: one from programmed electronic recording systems and the other from paper records 
Peiró [81] 1) In-silico data generated by computer simulation to validate the comparison results between multi-daily injection and closed-loop AP, 2) in-vivo data 

collected from T1D patients to train and test the ML hybrid closed-loop algorithm using Accu-Chek smart pix software to collect 4.621 glycemia tests. 
Wang et al. [94] Collected data from 2787 consecutive participants recruited from 27 centers in six cities in North China between January 2016 and December 2017. 
Rodríguez-Rodríguez et al. 

[98] 
Data collected from a wearable Abbott Freestyle Libre FGM sensor combined with a smartphone to transmit data to a central server for processing. The 
FGM sensor has local memory that can store past measurements for up to 8 h. 25 patients are considered during 2018 under the supervision of the 
Endocrinology Departments of the Morales Meseguer and Virgen de la Arrixaca Hospitals, in the city of Murcia (Spain). 

Kurdi et al. [87] Using institution’s HER data collection of patients (≥18 years old) on insulin pump therapy for at least six months and a follow-up visit within six 
months of insulin pump initiation at the clinic between December 2012 and July 2017. 

Tsao et al. [168] Collected data from a group of regular outpatients lasting for at least one year extracted for one season selected randomly from the “DM shared care” 
database in a private hospital in northern Taiwan 

Noaro et al. (2021) UVA/Padova T1D Simulator to generate the dataset consisted of data from 100 subjects. The use of a simulation environment allowed for testing the 
impact of multiple insulin bolus doses on patient blood glucose while maintaining the same conditions for each subject. 

Zafar et al. [88] OpenAPS Data Commons is a collection of anonymized diabetes data that includes rich CGM data, insulin delivery information from insulin pumps, 
user-entered information such as carbohydrate entries or temporary target changes, as well as algorithm-derived information about insulin dosing 
decisions. 

Hankosky et al. [100] Collected data from the IBM MarketScan commercial databases between 2015 and 2020 which contain individual-level de-identified healthcare claims 
from employers, health plans, hospitals, and Medicare and Medicaid programs across the US. 

Mueller et al. [116] De-identified health claims data from Optum Clinformatics Data Mart, which includes medical, prescription drug, laboratory, and eligibility 
information for over 13 million patients annually covered the period from 2014 to 2017. 

Bosnyak et al. [118] Optum’s Humedica EHR data sets are selected due to their attributes, including sample size, US geographic scope, richness of clinical data (especially 
clinical notes via NLP), and data quality. 

Musacchio et al. [99] Electronic records of 1.5 million patients seen at clinics within the Italian Association of Medical Diabetologists between 2005 and 2019 
Miller et al. [93] Observational measurements from two T1D participants using a CGM and an insulin pump throughout daily life collected using Apple’s HealthKit 

framework. 
Parcerisas et al. [114] Collected data from 10 patients that were monitored for 12 weeks. The clinical trial was conducted at the Hospital Clinic de Barcelona and has been 

registered under the identifier NCT03711656 at ClinicalTrials.gov. 
Liu et al. [84] EHR data from STARR (STAnford Research Repository). 
Dave et al. [115] CGM datasets were obtained from 112 patients using Dexcom G6 CGM devices over a range of 90 days consisting of over 1,639,921 CGM values under 

normal living conditions. 
Oviedo et al. [120] 1) Real patient data from a cohort of 10 individuals, 2) CGM data from 10 virtual patients generated using the UVA/Padova T1D simulator. 
Levy-Loboda et al. [75] Time-series data collection consists of 225,780 clinical logs, collected from real insulin pumps and CGMs of 47 patients with T1D (13 adults and 34 

children) from two different clinics at Soroka University Medical Center in Beer-Sheva, Israel over a four-year period. 
Thyde et al. [113] In-silico CGM data were generated to simulate a cohort of T2D patients on once-daily insulin injection (Tresiba). 
Nagaraj et al. [165] GIANTT database includes prescription data, medical history, results of routine laboratory tests, and physical examinations from over 50,000 patients 

diagnosed with T2D. 
Fujihara et al. [101] Japan Diabetes Clinical Data Management (JDDM) study group dataset consisting of data extracted from patients prescribed hypoglycemic agents from 

December 2009 to March 2015 
Shifrin and Siegelmann 

[83] 
Data samples from the Diabetes Control and Complications Trial (DCCT) and its follow-up, the Epidemiology of Diabetes Interventions and 
Complications (EDIC) study supplied by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repositories. 

Nguyen et al. [77] EHR data from a tertiary academic medical center from 2008 to 2020. 
Noaro et al. [79,80] Simulated dataset generated using the UVA/Padova T1D Simulator to create synthetic data for 100 virtual adult subjects. 
Elhadd et al. [117] A dataset from 13 patients with T2D who fasted during Ramadan, consisting of CGM and physical activity data including 19,540 samples. The patients 

were on multiple glucose-lowering therapies including insulin, with a median age of 51 years, median BMI of 33.2 kg/m2, and median HbA1c of 7.3 %. 
Benyó et al. [96] A dataset of patients treated by the Stochastic-TARgeted (STAR) protocol between June 2016 and August 2019 at Christchurch Hospital, New Zealand. 
Szabó et al. [92] In-silico validation simulating the treatment of 171 virtual patients. 
Guzman Gómez et al. [82] Data from 56 patients with T1D over 18 years using Medtronic 640G and Paradigm Veo insulin infusion pumps coupled to CGM using Enlite sensor and 

with an acceptable glycemic control, defined by a range of HbA1c between 6 % and 8 % and sensor use >80 % were included. 
de Farias and Bessa [74] In silico analysis using 20 virtual patients for a period of 7 days, with and without prior basal therapy, while in the long-term simulation, 1 virtual 

patient was assessed over 63 days 
Chen et al. [71] HER data of hospitalized T2D patients who received subcutaneous insulin injection. A total of 3275 patients with 38,406 insulin dose counts. 
Malmasi et al. [85] HER data of adult th diabetes under primary care within the networks of Massachusetts General Hospital and Brigham & Women’s Hospital spanning 

the period from 2000 to 2014 
Tarumi et al. [91] EHR data from one healthcare system, University of Utah Health (UUH), and one health information exchange, the Indiana Health Information 

Exchange (IHIE) 
Annuzzi et al. [89] AI4PG dataset provided by the Diabetes Outpatient Clinic of Federico II University Hospital (Naples, Italy) and CGM public dataset DirectNet 
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