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Abstract 
 
Survival and thrift in a globally competitive market strongly depend on the improvement of production quality while 
monitoring the pricing for grafting nurseries. Real-time monitoring of irrigation quality is a necessary yet cumbersome 
task for propagation facilities. Even for indoor facilities with automatic irrigation systems, this task remains 
bothersome due to the large greenhouses. The main goal of this paper is to propose an irrigation monitoring system to 
increase production productivity by minimizing the time workers spend on responding to irrigation monitoring calls. 
Here, a two-stage data-driven approach is proposed, where the traveling salesman model is implied on a reduced 
spatiotemporal network provided by Bayesian analysis to optimize workers routing for irrigation monitoring. The 
proposed approach is the final piece of a dynamic data-driven simulation-based optimization framework. The results 
over synthetic data demonstrate a potential reduction of 11.60% in traveled distance per worker per call. 
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1. Introduction  
Survival and thrift in a global competitive market strongly depend on improvement of production quality while 
monitoring the pricing for grafting nurseries. Grafting, a technique that vegetatively joins the roots and the bottom 
portion of one plant (rootstock) and a tender shoot (scion) from the top portion of another plant, has become an 
imperative technique for intensive vegetable production due to providing greater yield, more desirable fruit properties, 
and higher resistant to pests (Lee et al. 2010). Grafting has been increasingly tapped worldwide for cultivation under 
adverse environs posing abiotic (e.g., low/high temperature, drought/flooding, heavy metal and nutrition) and biotic 
(e.g., soil borne pathogens, foliar pathogens, arthropods and weeds) stresses to vegetable crops, resulting in expansion 
of commercial production onto otherwise under-exploited lands (Louws et al. 2010). Compelled by the increase of 
organic production and restrictions on utilizing synthetic pesticides, grafting has become an even more useful tool to 
manage soil borne disease issues in grounds of environmental protection. 
 
Greater yield, as one of the most prominent characteristics of grafting, opens a fruitful domain for indoors agroindustry 
such as greenhouse productions. Greenhouses are Hi-Tech horticulture farms, where advanced technological 
infrastructure are employed to increase the production efficiency through constant monitoring. The use of 
computational systems and technology such as sensors in agricultural applications has become viable due to the 
continuous reduction in their prices (Serôdio 2001). Vegetable cultivation in greenhouses is one of the main branches 
of agriculture in which the production management must be more controlled, so that the values of a set of parameters 
have to be monitored and approximated to an ideal value.  

  



Proceedings of the 8th North American International Conference on Industrial Engineering and Operations 
Management, Houston, Texas, USA, June 13-16, 2023 

© IEOM Society International 

The major features that are usually monitored in greenhouses are temperature, humidity, moisture, radiation and CO2 
concentration (Hanan 1998). As a result, greenhouse production remains the most intensive agricultural process known 
in terms of labor and capital (Hanan 1998). Consequently, the design and resource (e.g., labor, robots, space) allocation 
of greenhouses should be done carefully to sharpen the competitive edge of greenhouse productions by minimizing 
the price and ensure economic success by justifying the high capital investment. To achieve those goals, greenhouse 
literatures aimed at increasing the yield by optimizing climatic conditions such as radiation, temperature, moisture 
and gas distribution and flows (e.g., air, CO2) over the past three decades (Shklyar and Arbel 2004). 

 
Irrigated agriculture is one of the most vital components of total agriculture which supplies many of the fruits, 
vegetables, and cereal foods consumed by humans. Real-time monitoring of irrigation quality is a cumbersome task 
for propagation facilities. Even for indoors facilities with automatic irrigation systems, this task remains bothersome 
due to the large size of the greenhouses. This dissertation aims to reduce the traveling time of the workers through the 
greenhouse by optimizing the workers’ route planning, considering the probabilistic rise of irrigation monitoring 
request in near future. Here, a two-stage framework is proposed, where the allocation of labor takes place considering 
the possible rise for irrigation monitoring need with respect to the availability of the workers and their real-time 
location. Here, a radio frequency identification system is utilized to track workers’ location, and radio frequency 
identification enabled sensors are embedded within the soil to wirelessly report the moisture level. 

 
Given the importance of irrigation scheduling and monitoring systems, the main goal is to reduce the traveling time 
of the workers through the greenhouse by optimizing the workers’ route planning, considering the probabilistic rise 
of irrigation needs. Real-time monitoring of irrigation is a cumbersome task for propagation facilities even for indoors 
facilities with automatic irrigation systems due to the large size of the greenhouses. Recent progress in sensors 
technologies has led to automated irrigation scheduling systems due to reduced sensor price, easy implementation, 
and low maintenance needs. As a result, several irrigation scheduling methods such as soil water content or matric 
head monitoring, plant stress monitoring, water balance, computer models or charts (Cahn and Johnson, 2017) have 
been developed based on sound information systems. These systems can measure various environmental factors such 
as humidity and soil moisture (Nuñez-Olivieri et al. 2017).   

 
Many studies have shown that the development of decision support systems based on sensor networks could increase 
the efficiency of irrigation water and as a result increase productivity (e.g.,  Paris et al. 2018). Several researchers have 
investigated developing decision support tools for optimizing irrigation strategies. Geerts et al. (2010) utilized 
historical climate data to derive optimal frequencies of irrigation to avoid drought stress and guarantee maximum 
water productivity. Garcia-Vila and Fereres (2012) investigate the impact of imposing water quotas or increasing 
water prices by combining AquaCrop with an economic model. Shang and Mao (2006) developed a simulation-based 
optimization framework based on crop water production functions to produce the optimal winter wheat irrigation 
series in North China.  

 
Li et al. (2018) proposed a simulation-based optimization approach for crop optimal irrigation scheduling under 
uncertainty was developed to maximize the net benefit considering the uncertainties of water pricing. Wen et al. (2017) 
analyzed the optimal spring wheat irrigation schedules under plastic mulching utilizing a simulation-based 
optimization model by coupling water balance model, crop water production functions and optimization model. 

 
Although many efforts have been placed for irrigation scheduling, crop water production functions were traditionally 
obtained from long-term field experiments, which are site-specific, expensive and time-consuming. In addition, 
AquaCrop simulation is suitable for open field irrigation modelling and fails to model irrigation for greenhouse 
production. The resulting outcomes of such empiricisms are therefore unlikely to be sufficient and transferable to 
greenhouse production. At the same time, physical confirmation is mandatory for greenhouse production. To the best 
of our knowledge, this is the first work to address the routing of workers in greenhouses for irrigation monitoring and 
our current work is therefore an effort at closing this knowledge gap. The framework increases workers productivity 
by predicting and clustering the similar irrigation monitoring request into one trip, and then find the optimum route 
plan that minimizes workers traveled distance while insuring that all the irrigation monitoring requests have been 
satisfied. 
 



Proceedings of the 8th North American International Conference on Industrial Engineering and Operations 
Management, Houston, Texas, USA, June 13-16, 2023 

© IEOM Society International 

2. Literature Review  
Dynamic Data Driven Applications Systems (DDDAS) is a relatively new paradigm, where the computation and 
instrumentation aspects of application systems are dynamically integrated (Darema, 2004). This integration can 
dynamically incorporate instrumentation data into the executing model of the application, which in return enables 
more accurate and faster modeling and analysis of the behaviors of application systems. As a powerful tool, DDDAS 
has been perceived to implement effective measurement processes in a variety of application areas (Darema, 2008). 
In other words, DDDAS can exploit data in intelligent ways to convert them to new capabilities such as decision 
support systems with the accuracy of full-scale modeling, efficient data collection, management, and data mining 
(Blasch and Phoha, 2017). DDDAS concept entails the ability to incorporate data into an executing application 
simulation dynamically. At the same time, DDDAS enables applications to dynamically steer measurement processes. 
Utilizing dynamic data inputs in the system either in real-time mode or archival, promises the improvement of 
modeling methods, prediction accuracy of simulations, efficiency of simulations, and the effectiveness of 
measurement systems. 
 
During the past decades, the DDDAS paradigm has been widely discussed in literature. A false prediction of track as 
well as magnitude of a storm by meteorologists, and a simulation failure in behavior modelling of wildfire in Los 
Alamos National Laboratory and its propagation raised the motivation behind DDDAS (Darema et al. 2005). The key 
characteristic of DDDAS is not only its capabilities to dynamically incorporate data into simulation, but also the 
empowering of applications to dynamically affect the environmental data (Darema, 2005). DDDAS has been 
successfully implemented in many different fields such as contaminant tracking (Douglas et al. 2004), natural disaster 
forecasting (Patrikalakis et al. 2004), shop floor control (Son et al. 2002), supply chains (Celik et al. 2010), patrol 
control (Khaleghi et al. 2014), and many more. Douglas et al. (2004) introduced numerical procedures for multi-scale 
interpolation to map sensor data in order to continuously update the simulation of contaminant tracking. Online data 
acquisition and filtering control framework were proposed by Mandel et al. (2004) to recognize out-of-order data for 
wildfire control. The challenges of automatically adapting simulations were first brought into attention by Carnahan 
and Reynolds (2006) in supply chains. To address the mentioned challenges, Carnahan and Reynolds proposed a semi-
automated approach to exploit the flexibility and constraints of model abstraction to automate simulation adaptation. 
Although automatically generalizing adaptation for anticipating all possible ways is difficult, but this problem can be 
simplified by taking advantage of the flexibilities and constraints of simulation modeling (Parnas, 1979).  

 
While flexibility is required for automatic adaptation in order to find proper alternatives, constraints limits the number 
of feasible alternatives to be taken into account. Although manual modification of optimization methods is not a 
requirement for Carnahan and Reynolds proposed approach, but human intervention is required to determine the most 
likely alternatives. In another instance, Patrikalakis et al. (2004) provided an overview of a DDDAS for rapid adaptive 
interdisciplinary ocean forecasting, where an Internet-based distributed system enabled remote observations and data 
assimilation for effective estimation of uncertainties in oceanic fields. A simulation-based shop floor planning and 
control system was proposed by Son et al. (2002), where the same simulation model covered planning stage (in fast 
mode) as well as control stage (real-time). Celik et al. (2010) extend Son’s framework by proposing a comprehensive 
system architecture and methodologies such as abnormality detection, fidelity selection, fidelity assignment, and 
prediction and task generation in real-time DDDAMS based semi-conductor supply chain management. More 
recently, Khaleghi et al. (2014) proposed an effective and efficient surveillance and crowd control via unmanned aerial 
and ground vehicles, empowered by agent-based simulation, vision and filtering algorithms, and motion planning by 
graph search algorithms. As another application, Sang et al. (2018) proposed a DDDAS inventory management 
approach to optimize automated refreshment systems in a retail environment. 

 
In recent years, not only the grid computing technologies provide advanced computational capabilities, but also time 
measurement infrastructures such as instruments and sensor systems, data storage technologies, and remote data access 
have matured. As a result, signal processing techniques are applied to big data analysis to spawn developments in 
designs, algorithms, architectures, and applications. These improvements empower the capabilities of DDDAS and 
call for novel application modelling approaches and interfaces to measurement systems, mathematical and statistical 
algorithms tolerant to perturbations from dynamic data inputs, and systems software to support the dynamic resource 
requirements of such applications.  

 
Application modelling, mathematical and statistical processing, measurement systems, and systems software design 
area the four major interactive concepts of DDDAS. The planning updates usually arise from statistical data analysis 
within the measurement units. New insights have been developed for measurement systems with unobservable data, 
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such as new architectures to emulate data collections for missing data. To complement the modelling and statistical 
analysis, software methods are paramount for real-time applications. Data-driven simulation models as defined in are 
designed to be applicable to systems with same structures but different parameters’ value. Data-driven modelling 
approach guarantees low development cost and time in comparison to typical modelling approach due the 
independency of software utilization and maintenance of model development. 

 
Maximizing productivity is the main goal of irrigation scheduling through providing an optimum water supply by 
applying the right amount of water to the crops at the right time (Soulis and Elmaloglou, 2018). However, efficient 
irrigation management is challenging due to factors such as irrigation system characteristics, soil moisture level and 
crop specifications (Dabach et al. 2013). What makes the irrigation management even more complex for grafting 
nurseries is the requirement of physical confirmation of smooth irrigation, as abiotic stress have a higher impact on 
the agronomic growth of greenhouse products (Rodriguez-Ortega, 2017).  In this paper, a two stage data driven 
approach is proposed to minimize the distance traveled by workers for responding to irrigation monitoring calls, where 
the first stage utilizes Bayesian analyses in order to predict the potential rise of irrigation requests and the second stage 
in which a TSP model is solved to minimize the travelling of workers. Here, a complete literature review on the core 
elements of the stages one and two (i.e., Bayesian analysis and travelling salesman problem, respectively) is provided. 
 
2.1. Bayesian Analysis  
Bayesian analysis is the core element incorporated within first stage of the proposed approach. Bayes and Price (1763) 
first introduced three essential elements underlying Bayesian statistics as the prior knowledge, the information within 
the observed data, and the posterior inference, where prior knowledge refers to all knowledge available on model 
parameters prior seeing the data, the information within the observed data is the observed evidence, which is usually 
expressed in terms of the likelihood function, and the posterior inference is the combination of the first two elements 
through Bayes’ theorem. Bayesian techniques have the highest impact when data are generated by repeated execution 
of the same type of random experiment. The main advantage of Bayesian approaches is the fact that they allow 
researchers to incorporate background knowledge into their analyses and avoid ignoring the lessons of previous studies 
in contrast to statistical methods (Asendorpf et al. 2013). As a result, the plausibility of previous research findings can 
be evaluated in relation to new data, which makes the proposed method an interesting tool for confirmatory strategies.  

 
Given this advantage, the interfaces of applied decision-making have renewed interest in model development and 
prediction accuracy of Bayesian models. Recently, Bayesian analysis have been applied in different applications such 
as macroeconomics, finance, Psychopathology, environmental and resource management (Aastveit et al. 2018; 
Pettenuzzo and Ravazzolo, 2016). This growing body of research is a partial response to the need of improving 
information flows into policy and decision making at different levels. 
 
2.2. Travelling Salesman Problem  
The spatial analysis of the proposed irrigation monitoring approach has been modeled as a travelling salesman 
problem. One of the most popular and hardest problems from the NP set is the Travelling Salesman problem (TSP). 
As a solution, TSP has been widely applied in a variety of practical fields (Goyal 2010).  
 
TSP can either be defined combinatorial optimization problem, where the minimum Hamiltonian cycle in a graph of 
cities is of interest, or the decision problem, in which the existence of a weighted hamiltonian cycle in a graph is of 
question. Although both of these representations belong to NP family, the combinatorial optimization version belongs 
to the NP Hard set, whereas the decision version belongs to the class of NP complete problems. As result, it can only 
be assumed that there is no exact algorithm for solving any version of the TSP in polynomial time. Ever since TSP 
was coined in 1930, many efforts have been made to solve the travelling salesman problem either as a deterministic 
approach aiming for exact solution, or heuristic approaches to provide a solution with a near minimal cost. 

 
Dantzig et al. (1954) utilized linear programming relaxation techniques to solve the integer formulation through adding 
well- chosen linear inequality to the list of constraints continuously. The exponential growth in solution time with the 
increase of the input network inspired researchers to look for heuristic approach to find near optimal solution fast. For 
example, genetic and ant colony algorithms has been improved, revised and applied to solve TSP as a combinatorial 
problem (Duan and AI, 2016; Khushboo and Mamta ARORA, 2016). 
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3. Methods  
Figure 1 displays the DDDASO framework proposed for real-time planning and control of the facility under study. 
The framework consists of three main units which are called the real system, measuring unit, and planning unit. The 
real system consists of the material, workers, management, computation units, and the sensors which are implemented 
to observe the behaviour of the system under study.  
 

 
 

Figure 1. Dynamic data driven adaptive simulation-based optimization framework (Masoud et al. 2019). 
 
The measuring unit handles the streams of sensory data and the estimation of processing time and material handling 
time of the system under study, details of which are in our previous works (Masoud et al, 2019; Chowdhury et al. 
2020; and Chowdhury et al. 2021). In addition, the implementation of DDDAS paradigm in this framework and the 
fidelity level optimization of the dynamic decision making is discussed here (Masoud et al. 2019). The planning unit 
relies on the concept of simulation-based optimization where simulation mimics the performance of the system under 
study through the estimated parameters provided by the measuring unit, and optimization models look through 
different scenarios to find the optimal layout design (Masoud et al. 2019) and labour management (Masoud et al. 
2018). In this work, we will discuss the irrigation monitoring aspect which will finalize this DDDAS framework.  
 
The proposed data driven irrigation monitoring approach is designed to minimize the workers travelling time within 
the seedling propagation facilities by aggregating potential irrigation monitoring request in a single trip in each time 
window. The proposed approach relies on the concept of mean time between irrigation monitoring request (MBIMR).  
MBIMR is defined as the average time between calling for irrigation monitoring, as shown in Figure 2. As displayed 
in Figure 2, the RFID moisture sensors signals an irrigation monitoring requests whenever the soil moisture level hits 
a predefined threshold.  This threshold is designed considering a ∆𝑡𝑡Lead to provide enough time for the workers to walk 
to where the sensor is located and monitor the quality of irrigation. Within the proposed approach, temporal and spatial 
analyses are the main elements of optimizing irrigation monitoring problem. The temporal analysis covers fitting prior 
distributions for MBIMR based historical data and employing Bayesian rule to estimate the posterior distributions of 
the said variable, in order to predict the potential MBIMR request in near future and provide appropriate response in 
a single trip. Anytime a request for irrigation monitoring is signaled, the status of the system is updated for all the 
stationed RFID moisture sensors based on their fitted distributions and their last request timestamp. 
  
3.1. Temporal Analysis Unit 
The temporal analysis heavily relies on Bayesian rule, where prior information and data are combined through a solid 
and principled decision theoretical framework to provides interpretable answers. To deal with the high computational 
cost that is associated with Bayesian analysis, the prior distribution selection has been restricted to conjugate families. 
This restriction helps to avoid the estimation of the marginal distribution, 1: 1( | ) ( | )k k k k kp z x p x z dx−∫ , and provides 
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a closed form formula for estimating the expected MBIMR of each imbedded moisture sensor. Conjugate prior is a 
family of probability distributions characterized by some parameter θ, where all possible posterior distributions are 
also members of the same family. This family remains closed under evidence and contains the posterior, which leads 
to a large amount of algebraic simplicity in the computation of the posterior. The temporal analysis unit keeps track 
of the distribution of MBIMR for each imbedded soil moisture sensor as well as their latest request timestamp. As a 
result, whenever a new signal is received, the temporal analysis unit defines a set of soil moisture sensor nodes, whose 
expected MBIMR are within the 2∆𝑡𝑡Lead time interval. Then, this set is reported to the spatial analysis unit as a reduced 
spatiotemporal network to minimize the travelling time of the worker who performs the monitoring. 
 

 
 

Figure 2. Definition of mean time between irrigation monitoring requests 
 
3.2.  Spatial Analysis Unit 
Given a set of nodes including the coordinates of the imbedded soil sensors reported by the temporal unit and current 
position of a worker’s station, and distance between every pair of the coordinates, the spatial unit tries to find the 
shortest possible route that visits every node exactly once and returns to the workers station, which can be represented 
as a travelling salesman problem. The Travelling Salesman problem is one of the most popular problems in operation 
research and computer science communities. The Travelling Salesman Problem, first formulated as a mathematical 
problem in 1930, is a problem in combinatorial optimization, where given a list of cities and their pair wise distances, 
the task is to find the shortest possible tour that visits each city exactly once.  
 
Given a complete graph G(𝑁𝑁𝑡𝑡, 𝐷𝐷𝑡𝑡), the edge distances (i.e., 𝐷𝐷𝑡𝑡) between 𝑁𝑁𝑡𝑡 nodes are defined as 𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 at time t  where 

i, j = 1 . . . n. A trip to cover all the nodes of interest can be represented by a cyclic permutation 𝜋𝜋𝑡𝑡 of {1, 2, . . ., n} 
where 𝜋𝜋𝑡𝑡(𝑖𝑖) represents the city that follows city i on the trip. The goal is to find the optimum permutation 𝜋𝜋𝑡𝑡 that 
minimizes to traveled distance in trip t, defined as ∑ 𝑑𝑑𝑖𝑖𝜋𝜋𝑡𝑡(𝑖𝑖)

𝑛𝑛
𝑖𝑖=1 .  Alternatively, the TSP can be defined by following 

Miller-Tucker-Zemlin formulation (Desrochers and Laporte, 1991). 
 

𝑀𝑀𝑀𝑀𝑀𝑀∑ ∑ 𝑑𝑑𝑖𝑖𝑗𝑗𝑗𝑗𝑥𝑥𝑖𝑖𝑗𝑗𝑗𝑗𝑖𝑖                                                                                                (Eq. 1) 

Subject to: 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖≠𝑗𝑗 = 1                                     𝑗𝑗 = 1,2, … , |𝑁𝑁𝑡𝑡|                                     (Eq. 2) 

∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑗𝑗,𝑖𝑖≠𝑗𝑗 = 1                                     𝑖𝑖 = 1,2, … , |𝑁𝑁𝑡𝑡|                                     (Eq. 3) 

𝑢𝑢𝑖𝑖 − 𝑢𝑢𝑗𝑗 + 𝑛𝑛𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑛𝑛 − 1                     2 ≤  𝑖𝑖 ≠ 𝑗𝑗 ≤ |𝑁𝑁𝑡𝑡|                                   (Eq. 4) 

0≤ 𝑢𝑢𝑖𝑖 ≤ |𝑁𝑁𝑡𝑡| − 1                               2 ≤ 𝑖𝑖 ≤ |𝑁𝑁𝑡𝑡|                                          (Eq. 5) 

𝑥𝑥𝑖𝑖𝑖𝑖, 𝜖𝜖{0, 1}                                         ∀ 𝑖𝑖, 𝑗𝑗 ∈ {1,2, … , |𝑁𝑁𝑡𝑡|}                            (Eq. 6) 
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where 𝑥𝑥𝑖𝑖𝑖𝑖 (i.e., decision variable) defines whether the trip passes through nodes i and j, and 𝑢𝑢𝑖𝑖 is a dummy variable. 
Equation 1 minimized the total distance traveled at time t. Equation sets 2 and 3 are defined to require that each node 
has arrival from exactly one other node and one departure to exactly one other node. Equation 4 enforce a single trip 
to cover all nodes instead of multiple disjointed trips. To find the exact solution of the formulated problem with |𝑁𝑁𝑡𝑡|, 
a comparison of (|𝑁𝑁𝑡𝑡|−1)! feasible solutions is required. To evaluate all possible tours is infeasible for even small TSP 
instances. Although as a NP complete problem, the time required to solve the problem increases rapidly as |𝑁𝑁𝑡𝑡| grows, 
the spatiotemporal network reported by the temporal unit is small enough to be optimized using the existing methods. 
Here, this problem has been optimized via TSP package provided by Hahsler and Hornik (2019), where routes are 
weighted as the Euclidean distance between nodes. The Euclidean TSP is a special case of the TSP, where the distance 

between each two nodes (e.g., i and j) are defined as 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥,𝑦𝑦) = ��𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗�
2 + �𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗�

2
 for the network under 

study. 
 
4. Data Collection  
To test the performance of the proposed irrigation monitoring framework, simulated data have been utilized. The 
simulated data includes the location of workers within the facility and the water consumption of the plants. The 
simulation models used in the DDDAS framework has been validated in these works (Masoud et al. 2018; Masoud et 
al. 2019). 
 
5. Results and Discussion  
For the design of experiment, the optimal layout design proposed by (Masoud et al. 2019) has been incorporated, 
where 128 RFID soil moisture are simulated within the system to report the soil moisture level of each growing bench 
as a number between 0 to 100 . The network under study consists of 120 monitoring nodes within the greenhouse area 
and 30 working stations nodes in the headhouse, respectively. For the mentioned layout, 5 different irrigation patterns 
have been randomly simulated within the system that resulted in MBIMR fitted distributions displayed in Figure 3.  
 

 
 

Figure 3. Fitted normal distributions of MBIMR under 5 different randomly simulated scenarios. 
 
Anderson-Darling goodness-of-fit statistics are computed for the fitted normal distribution for all five sets of simulated 
data. The tests fail to reject the normal distribution at the significance level 0.05 for all fitted distributions due to 
having p-values of 0.31, 0.18, 0.42, 0.63, and 0.25.  
 
These fitted distributions are utilized as the conjugate prior distributions for the Bayesian analysis. Another important 
parameter that needs to be defined is the ∆𝑡𝑡Lead . ∆𝑡𝑡Lead  threshold is defined as the travelling time in which the 
mminimal distance travelled trip to cover all nodes, as shown in Figure 4. The displayed trip in Figure 4 has a length 
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of 503.16 meters. Considering the minimum humans walking speed of 0.5 meter per second as defined in Chapter 6, 
∆𝑡𝑡Lead is defined as 503.16/0.5 = 1,006.32 seconds, which rounds up 17 minutes.   
 

 
 

Figure 4. The minimal distance travelled trip to cover all nodes.  
 
By implementing the temporal analysis unit, considering a time window of 34 minutes, the following MBIMR request 
have been aggregated to be attend in six single trips with a randomly assigned as described in Table 1. 
 

Table 1. The proposed aggregated Trips 
 

Timestamp Assigned Worker Nodes to be Covered Total Traveled (m) 
1 127 53, 50, 49, 46, 55, 44 79.72 
2 133 37, 35, 39, 44, 42, 33 80.165 
3 122 3, 6, 11 48.81 
4 122 20, 25, 29, 92, 100, 105 131.73 
5 142 100, 110, 119 76.82 
6 135 61, 63, 72, 76, 87, 90 95.80 
 

Table 1 describes the nodes that are covered within each trip, the worker assigned to monitor irrigation quality in each 
trip, and the total distance travelled in each trip.  Routes that guarantee the minimum distance travelled for each trip 
are displayed in Figure 5.   
 

 
 

Figure 5. The proposed Categorization of Request  
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In contrast, we simulate the case where workers are not aware in time, and as a result each irrigation monitoring should 
be handled in a separate trip. For this case, Floyed-Warshall algorithm (Burfield 2013) is applied to find the shortest 
trip between the assigned workers and their destination. The results are displayed in Table 2. 
 

Table 2. Separate trips in response to irrigation monitoring requests 
 

Assigned 
Worker Covered Nodes  Traveled Distance (m) Total Traveled (m) 

127 44, 46, 49, 50, 53, 55 56.37, 17.36, 26.18, 29.04, 38.27, 44.51 211.57 
133 33, 35, 37, 39, 42, 44 23.11, 29.08, 35.21, 41.42, 50.82, 57.12 236.77 
122 3, 6, 11 24.47, 32.69, 47.55 104.72 
122 20, 25, 29, 92, 100, 105 26.38, 42.26, 55.02, 47.22, 61.06, 73 304.951 
142 100, 110, 119 48.54, 42.71, 65.57 156.82 
135 61, 63, 72, 76, 87, 90 14.5, 20.04, 47.72, 22.28, 50.63, 59.64 214.81 

  
Table 2 displays the travelling distances, in a case where the workers are not aware of incoming requests, and cover 
each request in a separate trip based on Floyed-Warshall shortest routes.  Each row in Table 2 reports the set of nodes 
and their associated travelling distance that each worker needs to cover. For example, Worker 122 travels 24.47 m, 
32.69 m, and 47.55 m to check the irrigation quality on nodes 3, 6, and 11, respectively which leads to total traveled 
distance of 104.72 m. By comparing the Tables 1 and 2, it can be noted workers are spending more time on responding 
to the same irrigation request without utilizing the proposed approach. To normalize the impact of the random 
assignment of the workers, all workers are assigned to cover the same set of nodes. The normalized results are 
displayed in Figure 6.  
 

 
  

Figure 6. Comparison the response time for each scenario 
 
6. Conclusion  
Although real-time monitoring of irrigation systems is a cumbersome task for indoor propagation facilities but is 
necessary for guaranteeing high quality production in vegetable seedling propagation facilities such as grafting 
nurseries. In this paper, a two stage data driven approach is proposed to minimize the distance traveled by workers for 
responding to irrigation monitoring calls. The temporal analysis unit (i.e., the first stage) studies MBIMR for the soil 
moisture in order to predict the potential rise of irrigation requests and clusters the requests that are close timewise as 
simplified spatiotemporal networks. Then, those spatiotemporal clusters are reported to the spatial analysis unit (i.e., 
stage two), where a TSP model minimizes the travelling of workers while guaranteeing visiting all nodes reported by 
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stage one. Preliminary experiments with simulated data have been conducted whose results display a potential saving 
of 25. 18 m (11.60%) in terms of travelled distance per worker per call. 
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